广告

苹果发布招聘信息,透露野心同时暴露了RISC-V短板

2021-09-06 10:54:24 歪睿老哥 阅读:
上周,EDN对苹果招聘RISC-V“高性能”程序员进行了报道,业内人士对这则招聘仔细阅读后指出,这个需求透露了苹果的野心,也暴露了目前RISC-V的短板。

上周,EDN对苹果招聘RISC-V“高性能”程序员进行了报道,业内人士@歪睿老哥 对这则招聘仔细阅读后指出,这个需求透露了苹果的野心,也暴露了目前RISC-V的短板。tJ6ednc

目前ARM可能将被NVIDIA收购,虽然NVIDIA一再保证,ARM会独立运行,但是作为CPU架构应用方,多留一手还是非常有必要的。tJ6ednc

苹果的RISC-V招聘需求里面描述,搞RISC-V是为了支持机器学习、视觉算法、信号和视频处理等方面的必要计算。通过紧密集成软件和硬件,推动底层计算的技术水平,最后达到高能效和高性能。tJ6ednc

目前苹果有包括 iOS、macOS、watchOS 和 tvOS 的各种嵌入式子系统。目前通过已有的信息综合来看,苹果的RISC-V将来大概率是用在的手表等智能穿戴设备上。tJ6ednc

如何满足这些苹果设备对CPU处理能力的需求?tJ6ednc

苹果在招聘中明确指出,应聘者应该具备RISC-V和 NEON的技术能力。tJ6ednc

RISC-V和ARM的NEON,是不是有点奇怪。tJ6ednc

RISC-V和NEON本身没有什么关系,一个是RISC-V指令系统,另一个是ARM的技术架构。tJ6ednc

但是这个需求透露了苹果的野心,也暴露了目前RISC-V的短板,那就是RISC-V缺乏SIMD的指令集。tJ6ednc

NEON是一种SIMD(单指令多数据)加速器处理器,作为ARM内核的一部分。这意味着在执行一条指令期间,最多可并行处理16个数据集。由于NEON内部存在并行性。它还可以并行执行单精度浮点(浮点)运算。NEON技术可加速多媒体和信号处理算法(如视频编码/解码、2D/3D 图形、游戏、音频和语音处理、图像处理技术、电话和声音合成。tJ6ednc

GPU则是另一种SIMD架构,GPU内部基本上包含执行大量SIMD计算的核心。因此可以大大提高了图形性能能力。tJ6ednc

但是,如果SIMD这么好用,为什么RISC-V放弃它并进行向量处理呢?tJ6ednc

RISC-V虽然没有添加SIMD指令集扩展,但是添加了Vector指令集扩展。tJ6ednc

自1978年以来,IA-32指令集已从80条增加到大约1400条,主要是由SIMD推动的。因此,x86和ARM的规范和手册非常庞大。tJ6ednc

相反,最重要的RISC-V指令的概述可以在在一张双面纸上写完。tJ6ednc

大道至简。tJ6ednc

除此之外,RISC-V的设计者希望有一个实用的CPU指令集,简单有效,并且经典。而SIMD的指令,每隔几年就会有新的发展,变化很大,就会越来越臃肿。tJ6ednc

这个是本质的区别。tJ6ednc

RISC-V通过扩展Vector指令集,可以支持向量处理,从而可以作为一个向量处理器(VFP)来使用,即通过Vector指令集扩展实现高效的计算,可以有效应对如机器学习、计算器视觉、多媒体应用等。tJ6ednc

RISC-V实现向量处理器(VFP),架构设计也更加精简,和现有CPU的深度流水线设计深度融合,并且资源可以重复利用,其编译的指令条目也比较少。tJ6ednc

ARM的也有类似的机制,向量处理的VFP,这是是一种经典的浮点硬件加速器。它并不是SIMD。基本上它对一组输入执行一个操作并返回一个输出。它的目的是加快浮点计算。tJ6ednc

向量处理器通过流水来增加性能,SIMD通过并行来增加性能。tJ6ednc

VFP通常一次能计算一个,而SIMD通常一次能计算很多。tJ6ednc

tJ6ednc

向量处理器(VFP)就像跑车,可以跑的很快,而SIMD就像卡车,可以一次装的很多,是一个重量级的解决方案,从芯片面积上来看,SIMD也比VFP更大一下,当然,频率也更慢一些。tJ6ednc

苹果目前招聘RISC-V还要懂NEON,这个就需要在RISC-V的-V扩展指令(VFP)和SIMD(NEON)上来平衡了tJ6ednc

就像《让子弹飞》中“让”学里描述的那样。tJ6ednc

RISC-V 的Vector向量扩展能不能解决搞机器学习?能,效率低。tJ6ednc

NEON(SIMD)能不能搞机器学习?能,面积大。tJ6ednc

那么RISC-V加NEON二者融合优化,能不能解决问题。tJ6ednc

敢问大哥何方神圣?tJ6ednc

鄙人,苹果!tJ6ednc

(本文授权自公众号歪睿老哥)tJ6ednc

责编:DemitJ6ednc

歪睿老哥
一个芯片设计行业老哥;忙时研发,闲时写作;聚焦芯片行业的那些事,唯武侠与芯片不可辜负。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • 国际象棋机器人Chessrobot夹断对手手指,意外还是设计缺 据悉,在7月19日的莫斯科国际象棋公开赛期间,一位7岁小男孩疑似因提前走子犯规手,意外被“对手”国际象棋机器人Chessrobot夹住手指,造成指骨骨折,该事件登上了热搜榜。该男孩是莫斯科9岁以下最强的30位棋手之一。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • M2 Pro 和 M2 Max 或是苹果首款采用台积电3nm 工艺的 M1 Pro 和 M1 Max 最多可配置 10 核 CPU 和 32 核 GPU。借助 M2 Pro 和 M2 Max,Apple 有望突破这一门槛,为这两个领域带来更多的核心数量。目前M2 Pro相关的爆料很少,但据称M2 Max 有12 核 GPU 和 38 核 GPU。12 核 CPU 将包括 10 个性能核心和两个能效核心。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了