广告

仿真看世界之SiC MOSFET单管的并联均流特性

2021-09-06 10:45:57 张浩,英飞凌工业半导体 阅读:
开篇前言关于SiC MOSFET的并联问题,英飞凌已陆续推出了很多技术资料,帮助大家更好的理解与应用。此文章将借助器件SPICE模型与Simetrix仿真环境,分析SiC MOSFET单管在并联条件

开篇前

关于SiC MOSFET的并联问题,英飞凌已陆续推出了很多技术资料,帮助大家更好的理解与应用。此文章将借助器件SPICE模型与Simetrix仿真环境,分析SiC MOSFET单管在并联条件下的均流特性。YmJednc

特别提

仿真无法替代实验,仅供参考。YmJednc

1、选取仿真研究对象

SiC MOSFETYmJednc

IMZ120R045M1(1200V/45mΩ)、TO247-4pin、两并联YmJednc

Driver ICYmJednc

1EDI40I12AF、单通道、磁隔离、驱动电流±4A(min)YmJednc

2、仿真电路Setup

如图1所示,基于双脉冲的思路,搭建双管并联的主回路和驱动回路,并设置相关杂散参数,环境温度为室温。YmJednc

外部主回路:直流源800Vdc、母线电容Capacitor(含寄生参数)、母线电容与半桥电路之间的杂散电感Ldc_P和Ldc_N、双脉冲电感Ls_DPTYmJednc

并联主回路:整体为半桥结构,双脉冲驱动下桥SiC MOSFET,与上桥的SiC MOSFET Body Diode进行换流。下桥为Q11和Q12两颗IMZ120R045M1,经过各自发射极(源极)电感Lex_Q11和Lex_Q12,以及各自集电极(漏极)电感Lcx_Q11和Lcx_Q12并联到一起;同理上桥的Q21和Q22的并联结构也是类似连接。YmJednc

并联驱动回路:基于TO247-4pin的开尔文结构,功率发射极与信号发射级可彼此解耦,再加上1EDI40I12AF这颗驱动芯片已配备OUTP与OUTN管脚,所以每个单管的驱动部分都有各自的Rgon、Rgoff和Rgee(发射极电阻),进行两并联后与驱动IC的副边相应管脚连接。YmJednc

驱动部分设置:通过调整驱动IC副边电源和稳压电路,调整门级电压Vgs=+15V/-3V,然后设置门极电阻Rgon=15Ω,Rgoff=5Ω,Rgee先近似设为0Ω(1pΩ),外加单管门极与驱动IC之间的PCB走线电感。YmJednc

YmJednc

1.基于TO247-4PinSiC双管并联的双脉冲电路示意YmJednc

3、并联动态均流仿

SiC MOSFET并联的动态均流与IGBT类似,只是SiC MOSFET开关速度更快,对一些并联参数会更为敏感。如图2所示,我们先分析下桥Q11和Q12在双脉冲开关过程中的动态均流特性及其影响因素:YmJednc

YmJednc

2.下桥SiC双管并联的双脉冲电路示意YmJednc

3.1 器件外部功率源极电感Lex对并联开关特性的影

设置Lex_Q11=5nH,Lex_Q12=10nH,其他参数及仿真结果如下:YmJednc

YmJednc

YmJednc

3.不同Lex电感的并联均流仿真结YmJednc

3.2 器件外部功率漏极电感Lcx对并联开关特性的影

设置Lcx_Q11=5nH,Lcx_Q12=10nH,其他参数及仿真结果如下:YmJednc

YmJednc

4.不同Lcx电感的并联均流仿真结YmJednc

3.3 器件外部门级电感Lgx对并联开关特性的影

设置门级电感Lgx_Q11=20nH,Lgx_Q12=40nH,其中Rgon和Rgoff的门级电感都是Lgx,其他参数及仿真结果如下:YmJednc

YmJednc

YmJednc

5.不同Lgx电感的并联均流仿真结YmJednc

3.4器件外部源极环流电感Lgxe和环流电阻Rgee对并联开关特性的影

在Lex电感不对称(不均流)的情况下,设置不同的源极抑制电感和电阻Lgxe=20nH,Rgee=1Ω和3Ω,看看对驱动环流的抑制与均流效果,其仿真结果如下:YmJednc

YmJednc

6.加源极抑制电感和电阻之前(虚线)和加之后(实线)的均流特性YmJednc

YmJednc

YmJednc

7.不同源极抑制电感和电阻(1Ω虚线)(3Ω实线)的均流特性YmJednc

4、总

基于以上TO247-4pin的SiC MOSFET两并联的仿真条件与结果,我们可以得到如下一些初步的结论:YmJednc

1、并联单管的源极电感Lex差异,SiC MOSFET的开通与关断的均流对此非常敏感。因为,源极电感的差异也会耦合影响到驱动回路,以进一步影响均流。如下图8所示,以关断为例,由于源极电感Lex不同,造成源极环流和源极的电位差(VQ11_EE-VQ12_EE),推高了Q11源极电压VQ11_EE,间接降低了Q11门级与源极之间的电压Vgs_Q11。YmJednc

YmJednc

8.不同源极电感时,关断时的源极环流与源极电位YmJednc

2、并联单管的漏极电感Lcx差异,对均流影响的影响程度要明显低与源极电感。因为漏极电感不会直接影响由辅助源极和功率源极构成的源极环流回路。YmJednc

3、门极电感差异对动态均流的影响不明显,而且驱动电压Vgs波形几乎没有变化。如果把主回路的总杂散电感减小,同时把门级电阻变小,让SiC工作在更快的di/dt和dv/dt环境,此时门级电感对均流的影响可能会稍微明显一点。YmJednc

4、辅助源极电阻Rgee,对抑制源极环流和改善动态均流的效果也不甚明显。YmJednc

在这里提出另一个问题:既然Rgee对抑制源极环流效果一般,那如果给门极增加一点Cge电容呢?请看以下仿真:YmJednc

YmJednc

9  增加1nF门级Cge电容对源极不均流特性的影响(虚线为无Cge,实线为有Cge)YmJednc

由上述仿真可以看出,Cge电容对于关断几乎没有影响,而Cge之于开通只是以更慢的开通速度,增加了Eon,同时减轻了开通电流振荡,但是对于开通的均流差异和损耗差异,影响也不大。YmJednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 【电驱变革深探】: 从测试角度看800V超充技术下的电驱 市场调研数据显示,超过80%的用户对电动汽车的充电速度和续航里程表示不满,虽然新能源汽车市场在近几年飞速变化,但距离满足消费者心理预期的更高使用需求,尚有较大提升空间。预测数据显示,到2025年,800V SiC的市场占比将达到15%左右;不过在电动汽车全球发展提速的大趋势下,这一预测节点也许会提前到来。
  • 筑波科技提供美商Teradyne ETS设备,打造客制化先进功 近年新能源碳中和相关概念法规逐步落地,因应全球消费性产品及电动汽车(EV)对高功率、高流高压测试需求增长,第三代半导体GaN(氮化镓)与SiC(碳化硅)材料为新主流。在供应链中每个组件的质量把关都是关键,制程测试准确度足以影响整体PMIC,筑波科技与泰瑞达携手合作推广Eagle Test Systems (ETS),基于20年无线通信及半导体测试经验,满足客户客制化需求。
  • 面向低功耗工业4.0应用的可编程安全功能 本文概述了FPGA如何推进纵深防御方法的发展以开发安全应用程序,这是在第四次工业革命的推动下,满足IoT和边缘计算迅速增长的需求的必经之路。本文介绍了安全功能在硬件、设计和数据中的作用,以及如何在安全性的三个要素(机密性、完整性和真实性)基础上构建应用程序。
  • 车规MOSFET技术确保功率开关管的可靠性和强电流处理能 如今,出行生态系统不断地给汽车设计带来新的挑战,特别是在电子解决方案的尺寸、安全性和可靠性方面提出新的要求。此外,随着汽车电控制单元 (ECU) 增加互联和云计算功能,必须开发新的解决方案来应对这些技术挑战。
  • 功率器件动态参数测试系统选型避坑指南 动态特性是功率器件的重要特性,在器件研发、系统应用和学术研究等各个环节都扮演着非常重要的角色。故对功率器件动态参数进行测试是相关工作的必备一环,主要采用双脉冲测试进行。
  • 东芝推出有助于减小贴装面积的智能功率器件 小型高边和低边开关(8通道)
  • 东芝推出采用新型高散热封装的车载40V N沟道功率MOSF 东芝电子元件及存储装置株式会社(“东芝”)宣布推出采用新型L-TOGL™(大型晶体管轮廓鸥翼式引脚)封装的车载40V N沟道功率MOSFET---“XPQR3004PB”和“XPQ1R004PB”。这两款MOSFET具有高额定漏极电流和低导通电阻。产品于今日开始出货。
  • 罗姆第4代MOSFET技术回顾 在产品发布声明中,罗姆声称其第4代产品“通过进一步改进原有的双沟槽结构,在不影响短路耐受时间的情况下,使单位面积导通电阻比传统产品降低40%。”他们还表示,“此外,显著降低寄生电容使得开关损耗比我们的上一代碳化硅金氧半场效晶体管降低50%成为可能”。在本文中,我们将公开一些具有启发性的早期分析,以便验证罗姆的上述声明,并理解其所做的改进。
  • 2023年1月芯品回顾——功率器件 今年一月各大厂商新推出的功率器件可圈可点,在能效、封装、散热、简化设计等方面都取得了不错的表现,同时研发重点也更着重聚焦于碳化硅功率器件在电动汽车上的应用。
  • Vishay推出的新款对称双通道MOSFET可大幅节省系统面积 节省空间型器件所需PCB空间比PowerPAIR 6x5F封装减少63%,有助于减少元器件数量并简化设计.
  • 瑞萨电子推出全新汽车级智能功率器件,可在新一代E/E架 新型智能功率器件带来40%的尺寸缩减
  • 意法半导体推出具超强散热能力的车规级表贴功率器件封 意法半导体推出了各种常用桥式拓扑的ACEPACK™ SMIT 封装功率半导体器件。与传统 TO 型封装相比,意法半导体先进的ACEPACK™ SMIT 封装能够简化组装工序,提高模块的功率密度。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了