广告

使用低静态电流降压/升压转换器延长流量计电池寿命的3个好处

2021-12-03 阅读:
与锂二氧化锰 (LiMnO2) 等电池化学物质相比,锂亚硫酰氯 (LiSOCI2) 电池可实现更高的能量密度和更出色的每瓦成本比,因此普遍用于智能流量计。但 LiSOCl2 电池有一个缺点,即对峰值负载的响应性较差,这可能导致电池可用容量降低。因此在本文中,我们将探讨一种降低电池峰值负载(数百毫安级)的有效方法,从而帮助延长电池寿命。

与锂二氧化锰 (LiMnO2) 等电池化学物质相比,锂亚硫酰氯 (LiSOCI2) 电池可实现更高的能量密度和更出色的每瓦成本比,因此普遍用于智能流量计。但 LiSOCl2 电池有一个缺点,即对峰值负载的响应性较差,这可能导致电池可用容量降低。因此在本文中,我们将探讨一种降低电池峰值负载(数百毫安级)的有效方法,从而帮助延长电池寿命。KE6ednc

更大程度提高电池可用容量是十分重要的,因为这可以使系统设计实现:KE6ednc

  • 在使用相同电池的条件下增加仪表读数次数和数据传输量。
  • 在使用相同电池的条件下实现更长的寿命。
  • 在工作寿命不变的情况下减小电池尺寸。

通过对更多类型的流量计应用相同的设计,以上优势可更大程度地降低电池成本、维护成本和开发成本。KE6ednc

设计难题:延长电池寿命

成功的仪表设计需要实现长久的运行时间(大于 15 年)以及阀控制、数据记录和数据传输等功能。延长电池寿命是一种延长仪表运行时间的有效方式。但是,如果不使用任何电源缓冲器,直接将电池与负载进行连接,那么仪表复杂的负载曲线可能会缩短电池寿命。KE6ednc

根据电流电平不同,可以将标准仪表的负载消耗曲线分为待机模式、中间模式和工作模式。每种模式对电池寿命的影响不同:KE6ednc

  • 待机模式的电流消耗为 5µA 至 100µA。主要耗电项为计量、微控制器和保护电路的静态电流 (IQ)。虽然其绝对值非常小,但通常是影响仪表寿命的主要因素。处于待机模式时,连接的任一直流/直流转换器的 IQ 均应处于纳安级,电源缓冲器的泄漏值应处于低水平,从而提高效率。
  • 中间模式的电流消耗为 2mA 至 10mA。通常情况下,这类负载来自于 RX 阶段的模拟前端。在此模式下,电源缓冲器的效率对于更大程度地减小能量损耗十分重要。
  • 工作模式下的电流消耗最高。在工作模式下,负载通常来自于 TX 阶段的驱动阀和模拟前端,需要 20mA 至几百毫安的电流。直接从 LiSOCl2 电池中获取电流会使电池容量严重降额。

表 1 显示了在不同的负载和温度条件下,Saft LS33600 电池在 17Ah 额定容量基础上的容量降额情况。在工作温度为 +20°C 时,200mA 负载电流会导致容量降额 42%。因此,绝不可直接使用电池对负载供电。只有使用低泄漏的电源缓冲器,才可以将峰值电流限制在 10mA 以下。KE6ednc

KE6ednc

表 1:Saft Batteries LS33600 电池的容量和电流特性KE6ednc

TI TPS61094 60nA IQ 降压/升压转换器可在延长电池寿命的同时,在待机模式、中间模式和工作模式下保持出色效率。TPS61094 主要具有三个好处:KE6ednc

  • 在宽负载范围内实现超高效率。在 VOUT = 3.3V 且 VIN 大于 1.5V 的条件下,负载为 5µA 至 250mA 时,TPS61094 可实现大于 90% 的平均效率,在大部分流量计用例中实现高效电源。
  • 限制电池的峰值电流。在 Buck_on 模式下为超级电容器充电时,或在补充模式下使用电池对 VOUT 端的重负载供电时,TPS61094 均可以限制其峰值输入电流。图 1 显示了 TPS61094 的配置,图 2 显示的是 VOUT 端有 200mA 和 2s 负载脉冲时的电池峰值电流。在第 1 阶段重负载条件下,峰值电流限制在 7mA。在第 2 阶段负载释放后,器件以 10mA 的恒定电流对超级电容器充电。当超级电容器的电压经过充电恢复至 2.0V 时,器件会停止充电,但仍处于 Buck_on 模式。

KE6ednc

图 1:TPS61094 的配置KE6ednc

KE6ednc

图 2:示波器显示重负载下的电池峰值电流结果KE6ednc

  • 在整个温度范围内,超级电容器可提供的能量保持不变。通常情况下,使用混合层电容器 (HLC) 或双电层电容器 (EDLC) 作为电源缓冲器可提高脉冲负载能力。但是,这些无源器件内存储的能量取决于电池电压。温度降低时,电池电压也会随之下降,这会削弱 HLC 或 EDLC 的脉冲负载能力,并增大电池的电源电流。要解决这个问题,TPS61094 会使超级电容器的电压保持稳定,无论温度如何变化都不会改变电压。

超级电容器内的可用能量取决于超级电容器的容量、设定的超级电容器两端最大电压和 TPS61094 的欠压锁定功能。超级电容器的可用能量越多,在连续重负载条件下的工作时间越长。KE6ednc

图 3 分别显示了采用 TPS61094 或仅使用超级电容器的电源缓冲器解决方案。在 TPS61094 解决方案中,超级电容器电压设定为 2V。TPS61094 为连续负载供电时,可从超级电容器吸收功率,直到超级电容器电压降为 0.6V。因此,可以借助公式 1 计算超级电容器上的可用能量:KE6ednc

KE6ednc

其中 ŋ 是转换器的平均效率。KE6ednc

在温度为 –40°C 的最差情况下,TPS61094 可在输入电压为 2V 至 0.6V、电流为 150mA 时实现 92% 的平均效率。公式 2 显示计算结果为:KE6ednc

KE6ednc

KE6ednc

图 3:TPS61094 与 HLC/EDLC 配置KE6ednc

在 HLC 或 EDLC 解决方案中,可用能量随着电池电压的变化而变化。在温度为 –40°C 且电流为 10mA 时,LS33600 电压会降至 3V。利用公式 3 计算可用能量为:KE6ednc

KE6ednc

对公式 2 和 3 的结果进行比较,可发现 TPS61094 解决方案的可用能量是 HLC 和 EDLC 解决方案的两倍。这意味着有更多的能量被输送到负载,并且在极端情况下,电池的峰值电流会降低。例如,如果在 3.3V 的电压下使用 200mA 负载来驱动阀门,HLC 或 EDLC 解决方案仅能在 2.8s 时间内支持负载。具有集成式超级电容器的 TPS61094 降压/升压转换器可在长达 7.8s 的时间内支持负载(假设由电源缓冲器为所有负载供电)。KE6ednc

结语

流量计具有复杂的负载消耗曲线,因此需要使用电源缓冲器,以帮助延长 LiSOCl2 电池的寿命。TPS61094 可在宽工作范围内实现出色效率,是解决电池寿命难题的理想之选。通过限制电池的峰值电流,这款降压/升压转换器可更大程度提升容量以及超级电容器的可用能量,与 HLC 或 EDLC 解决方案相比,可使系统在低温条件下工作更长时间。KE6ednc

其他资源

关于德州仪器(TI)

德州仪器(TI)(纳斯达克股票代码:TXN)是一家全球性的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。 欲了解更多信息,请访问公司网站http://www.ti.com.cn/KE6ednc

商标

所有其它商标和注册商标均归其各自所有者专属。KE6ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 电动车的电路保护、功率控制如何设计才更安全? 在对抗污染和减缓气候变化方面,两轮和三轮电动车(EV)的发展与四轮和更大EV的发展一样重要。与汽车和卡车相比,大量采用燃烧技术的两轮和三轮车辆对于燃烧控制较少,并且产生大量污染。两轮和三轮EV的设计人员面临着与四轮和更高等级EV设计人员相同的困难挑战,包括最大化两次充电之间的里程数、车辆高可靠性和车辆安全性。
  • 运算放大器功耗与性能的权衡 在选择合适的放大器时,往往需要考虑运算放大器的功耗,并做出权衡。低功耗往往也表示低带宽。但是,这也取决于给定的放大器架构和稳定性要求...
  • 大联大世平集团推出基于NXP产品的PEPS无钥匙进入及启 大联大控股宣布,其旗下世平推出基于恩智浦(NXP)S32K144、NJJ29C2、NCF29A1和NCK2912芯片的汽车无钥匙进入及启动系统解决方案。
  • 开发基于碳化硅的25kW快速直流充电桩(第二部分):方案概述 在本系列文章的第一部分中,我们介绍了电动车快速充电器的主要系统要求,概述了这种充电器开发过程的关键级,并了解到安森美(onsemi)的应用工程师团队正在开发所述的充电器。现在,在第二部分中,我们将更深入研究设计的要点,并介绍更多细节。特别是,我们将回顾可能的拓扑结构,探讨其优点和权衡,并了解系统的骨干,包括一个半桥SiC MOSFET模块。
  • 使用实时MCU顺应服务器电源的设计趋势 随着服务器和数据中心在全球范围内的应用日益广泛,对稳定高效电源的需求越来越强烈,以应对不断增加的功耗。用电量一直快速增长,因此需要更多的集成中央处理单元、图形处理单元和加速器来提高服务器和数据中心的计算速度。应用效益的提高催生了电源装置 (PSU) 的发展,以提供高能效、快速瞬态响应、高功率密度和更大的电源容量。
  • 如何实现向高级电机控制的转变 基于采用无传感器磁场定向控制(FOC)的永磁同步电机(PMSM)的高级电机控制系统快速普及,这种现象的背后有两个主要驱动因素:提高能效和加强产品的差异化。虽然有证据表明采用无传感器FOC的PMSM可以实现这两个目标,但需要一个可提供整体实现方法的设计生态系统才能取得成功。利用整体的生态系统,设计人员能够克服实现过程中阻碍系统采用的各种挑战。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了