广告

苹果M1 Ultra突破千亿颗晶体管,验证华为“双芯叠加”的可行性

2022-03-09 13:39:21 综合报道 阅读:
在刚刚结束的苹果春季发布会上,苹果如大家所愿发布了最新的高性能芯片,苹果的做法是采用M1 Max中隐藏的芯片互连模块,通过Ultra Fushion架构把两块芯片像拼拼图一样“合二为一”拼接成“M1‌ Ultra”,而国内企业有同样思路的就是华为海思了。

在刚刚结束的苹果春季发布会上,苹果如大家所愿发布了最新的高性能芯片,但却不是此前预测的“M2”芯片,由两块M1 Max芯片拼接而成的“M1‌ Ultra”,这样的“组合”使得其晶体管数量达到1140亿颗,这也是苹果自研芯片的晶体管数量首次突破1000亿颗。BgQednc

BgQednc

‌M1‌ Ultra 拥有 20 核 CPU,具有 16 个高性能内核和 4 个高效内核。‌M1‌ Ultra 支持高达 128GB 的​​统一内存,比M1 Pro和 ‌M1 Max‌ 支持的高达 64GB 内存有所增加。提供 2.5TB/s 的带宽。BgQednc

在图形方面,‌M1‌ Ultra 拥有 64 核 GPU,其图形处理速度是‌M1‌ 的 8 倍。‌M1‌ Ultra 拥有 32 核神经引擎,每秒可运行 22 万亿次操作,并具有两个独立的媒体引擎。BgQednc

“M1 Ultra 是 Apple 芯片的又一个游戏规则改变者,它将再次震撼 PC 行业。通过将两个M1 Max 芯片与我们的 UltraFusion 封装架构相连接,我们能够将 Apple 芯片扩展到前所未有的新高度,” 苹果公司硬件技术高级副总裁Johny Srouji表示:“凭借其强大的CPU、庞大的 GPU、令人难以置信的神经引擎、ProRes 硬件加速和海量统一内存,M1 Ultra 完善了M1系列,成为世界上最强大、功能最强大的个人计算机芯片。”BgQednc

苹果的Ultra Fushion架构是什么?

众所周知,要做更强大的芯片,就需要堆更多的电路,更多的晶体管,而工艺越先进,同样的面积就能塞进去更多晶体管,芯片性能上限就越高,这也是为何大家追求更先进制程的原因之一。BgQednc

但在当下的工艺技术条件下,晶体管多了,良率就会降低,良率低了,那每个芯片就会变得非常昂贵,那么如何才能在降低成本的前提下,做出超越极限的芯片呢?BgQednc

苹果的做法是采用M1 Max中隐藏的芯片互连模块,通过Ultra Fushion架构把两块芯片像拼拼图一样“合二为一”。BgQednc

苹果的“Ultra Fushion”其实就是Die to Die Connection,就是在芯片设计时在同一个封装(package)里面使用多枚硅片(silicon),并且在其中设计极其高速的互联通道,使得这两块硅片可以形同一块芯片一样共同工作。BgQednc

UltraFusion使用了1万条DTD连接,提供了高达2.5TB/s的互联速度,它的带宽极高、能耗极低,而且由于是数块die共同封装,其对良率的敏感度要远低于一块超巨型芯片,因此DTD也被认为是未来芯片性能发展的一条具有巨大潜力的道路。BgQednc

值得一提的是,M1 Max是一个基于小芯片(chiplet)的设计中将多个芯片堆叠在一起的芯片模块(MCM),其2-tile的规格使其从CPU到GPU到NPU到内存带宽到内存容量,全部都是2xM1 Max的规格BgQednc

与华为的“芯片叠加专利”思路一致

当然这条道路也不是只有苹果在走,AMD 早在 2017 年就引入了 MCM 并且在 2019 年引入了Chiplet 设计,未来的发展趋势是进一步提升堆叠能力,实现所谓的 3D 堆叠,也就是不仅在 2D 上扩展,还要在垂直方向上扩展。BgQednc

BgQednc

而国内企业有同样思路的就是华为海思了。BgQednc

在2021年5月份的时候,华为将“双芯叠加”的专利进行了公开,并表示14nm技术可以到达7nm的性能,此消息一出顿时在世界范围内引起热议,得到全球的关注。BgQednc

简单来讲14nm与7nm之间,它们的主要差别就是在芯片面积相同的情况下,7nm可以拥有更多的晶体管数量,在性能方面自然也会有所提升。BgQednc

BgQednc

BgQednc

华为通过特殊的设计,将两颗14nm芯片叠加在一起,在性能方面直接升级为之前的两倍,也就堪比7nm技术。BgQednc

华为该项技术一出现就遭到了许多人的质疑,大家认为只是将两个14nm芯片叠放在一起,不可能完全达到7nm水准,就好比将两杯50℃的水倒在一起,并不能达到100℃,不能实现1+1≥2的效果。BgQednc

而苹果的M1 Ultra也验证了华为“双芯叠加”思路的可行性。BgQednc

高性能产品走chiplet这条路走得通!

知乎用户@超合金彩虹糖表示,这颗M1 Ultra是苹果野心的进一步延续,连最有钱的苹果也转向chiplet了,这预示着也许未来在消费级领域,高性能产品走chiplet这条路可以走得通。BgQednc

目前来看,芯片组合叠加已经从理论变成现实,从芯片封装的角度来看,逐渐从2.5D封装走向3D封装,芯粒 (Chiplet) 将提供最佳性能和最大灵活性。BgQednc

台积电、英特尔、三星、AMD等十家公司已经行动了,联合创建UCIe联盟。(详情:英特尔、AMD、Arm等九大企业宣布UCIe开放标准,推动Chiplet发展BgQednc

UCIe联盟创建的初衷是将小芯片打造成开放,互联的产业发展生态,让不同客户也能通过各类小芯片产品满足更多的需求。BgQednc

未来,以Chiplet模式集成的芯片会是一个“超级”异构系统,可以带来更多的灵活性和新的机会。BgQednc

芯原股份创始人、董事长兼总裁戴伟民曾表示,对于产业来说,Chiplet带来了新的机会,在标准与生态层次上,Chiplet建立了新的可互操作的组件、互连协议和软件生态系统;对于芯片制造与封装来说,增设了多芯片模块 (Multi-Chip Module,MCM) 业务,Chiplet迭代周期远低于ASIC,可提升晶圆厂和封装厂的产线利用率;对于半导体IP来说,升级为Chiplet供应商,可提升IP的价值且有效降低芯片客户的设计成本;最后对于芯片设计来说,降低了大规模芯片设计的门槛。BgQednc

戴伟民建议国内企业持续推进Chiplet量产和2.5D/3D封测技术开发。BgQednc

邀您报名参加IIC Shanghai 2022

2022年4月21日,芯原股份创始人、董事长兼总裁戴伟民将出席由AspenCore主办的“2022国际集成电路展览会暨研讨会(IIC Shanghai 2022)”(4月20-21日,上海国际会议中心)的“2022中国IC领袖峰会”,邀您报名参加BgQednc

本文综合整理自知乎、macrumors等BgQednc

责编:Demi
  • 华为还是那么的优秀
  • M1 Ultra 的构建方式有点简单而粗暴,只需集成两个 M1 Max 并几乎立即将规格翻倍。当然,实际实现过程并不简单,苹果在 M1 Max 芯片中启用了互连模块(die-to-die 连接器),苹果称之为“Ultra Fusion”技术,让两颗芯片的互连带宽达到 2.5 TB/s,并拥有10,000多个信号点,显着降低延迟并提高效率。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • 国际象棋机器人Chessrobot夹断对手手指,意外还是设计缺 据悉,在7月19日的莫斯科国际象棋公开赛期间,一位7岁小男孩疑似因提前走子犯规手,意外被“对手”国际象棋机器人Chessrobot夹住手指,造成指骨骨折,该事件登上了热搜榜。该男孩是莫斯科9岁以下最强的30位棋手之一。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 美国国土安全部(DHS)被曝大量购买和使用手机定位数据 据EDN电子技术设计了解,美国公民自由联盟18日发表最新文件,称美国国土安全部(DHS)使用移动定位数据来追踪人们的行动,据悉美国公民自由联盟发表的记录多达数千页,其规模远远超过之前的认知。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了