广告

实现“长尾四件套”幅度调制器

2018-12-07 08:38:52 John Dunn 阅读:
本设计实例描述了如何实现一个四晶体管差分放大器,即“长尾四件套”。这样的设计工作得不错。载波频率范围为10kHz至40MHz,调制频率范围为10Hz至50 kHz。跨导与发射极电流的线性关系意味着幅度调制性能非常好,而且满足了必须使用多家元器件来源的管理要求。

多年前,我需要制作一个幅度调制器作为信号发生器设计的一部分。我选用了RCA型CA3004作为可变跨导放大器,它工作得非常好。lMQednc

DI2-F1-201812.jpglMQednc
图1:CA3004的美好回忆。lMQednc

图1中Q1和Q2表现出的跨导与Q3控制的发射极电流直接相关,并呈线性变化。通过Q3的电流越大,Q1和Q2的跨导越高,Q1和Q2提供的信号增益越多。整个电路通俗地称为“长尾对”。lMQednc

虽然我的电路工作得非常好,但上面的领导发话说,一定不能依赖独家元器件供应商。而RCA却是这个CA3004器件的唯一来源,所以我不得不放弃这个成功的电路设计,而去构想其它办法。lMQednc

你还别说,上面的领导是对的。大约一年后,RCA停止生产CA3004。虽然RCA有一系列类似的产品型号,其中包括CA3028。但除CA3028外,其它型号都跟CA3004一起被停产了。CA3028的产品寿命要长一些,我却选择了错误的型号。lMQednc

我第一次尝试使用多来源器件是使用2N918型分立晶体管制作另一个长尾对。那时我才弄清发明集成电路的原因。2N918没有参数匹配或相互跟踪,因此两个器件之间的电流分配极不稳定,随温度变化比较大。lMQednc

解决问题的办法是制作一个四晶体管差分放大器,可以称为“长尾四件套”。lMQednc

图2中的电路跟我所做的设计不完全一样,不但因为2N918没有在我使用的MultiSim SPICE版本中建模,而且我将近50年没有真正看过那个原理图了,所以记忆也不好使啦。尽管如此,其工作原理并没有变。lMQednc

DI2-F2-201812.jpglMQednc
图2:长尾四件套。lMQednc

这里,Q1和Q2仍然作为差分对工作,但它们的发射极彼此通过电容耦合,而不是直接相连。Q1和Q2分别有自己的电流源Q3和Q4,而不是共用一个电流源。lMQednc

这两个电流源具有很好的热稳定性,因此即使Q1和Q2与温度参数不匹配,关系也不大。从图2的电路中,我们看到SPICE结果(如图3所示)。lMQednc

DI2-F3-201812.jpglMQednc
图3:未调制的载波信号。lMQednc

来自信号源V3的载波信号在Q1和Q2的集电极处呈现差分。请注意,集电极信号彼此有180°相位差异。lMQednc

DI2-F4-201812.jpglMQednc
图4:没有载波的调制信号。lMQednc

来自信号源V4的调制信号在Q1和Q2的集电极处以共模方式出现。其集电极信号相对于彼此处于0°相位角。lMQednc

DI2-F5-201812.jpglMQednc
图5:已调制的载波信号。lMQednc

如果我们将Q1的集电极信号减去Q2的集电极信号,并接通电源,结果就产生调幅载波,调制信号本身在减法运算中被消除。lMQednc

这样的设计确实工作得不错。载波频率范围为10kHz至40MHz,调制频率范围为10Hz至50kHz。跨导与发射极电流的线性关系意味着幅度调制性能非常好,而且也满足了必须使用多家元器件来源的管理要求。lMQednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Implementing a long-tailed quad。)lMQednc

lMQednc

《电子技术设计》2018年12月刊版权所有,禁止转载。lMQednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
John Dunn
John Dunn是资深电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 工程师更乐意在开发物联网中采用AI 根据Newark发表的最新调查报告,工程师更乐意在其设计中部署AI,以期改善产品并进而提升其系统的ROI...
  • 三星推出其最快的 GDDR6 内存!基于EUV 10nm 1z工艺 结合创新的电路设计和先进的绝缘材料,基于极紫外 (EUV) 技术的第三代 10 纳米级 (1z)1 工艺,三星的新内存将成为第一款速度高达 24Gbps 的 GDDR6。
  • 抢跑3nm制程竞赛,三星能否领先台积电? 藉由比台积电更早一点开始制造3nm芯片,是否有助于三星获得显著优势还有待观察,而这也将会是一件有趣的事...
  • 凭借智能制造掀起变革 汽车行业正在以前所未有的速度重新洗牌。技术进步正在重新定义交通运输行业,电子元器件和软件转变了发展风向,使其从传统机械转向复杂的可持续、可娱乐和可互联的移动出行。
  • 使用防火墙保护互联汽车的策略 对车辆网络安全的需求越发迫切,因为车辆系统面临着多方面的恶意威胁。白帽黑客已经证明他们可以远程侵入互联车辆的仪表板功能和变速箱。
  • 理工类专业的薪酬更高,前三名为机械工程、材料科学与工 高考刚结束,志愿填报成了考生及家长当下关注的焦点。某人力机构发布的《2022年大学生就业前景研判及高考志愿填报攻略》显示2021届应届大学生整体就业形势、不同院校及专业毕业后的薪酬情况,数据显示双一流院校毕业生具备更强的就业竞争力,首份工作月薪上也领跑。
  • 成本不到一毛钱的塑料芯片,真的能量产吗? 现在研究人员设计了一种新的塑料处理器,他们估计能够以不到一便士(约合人民币0. 082元)的价格大规模生产。根据IEEE Spectrum 的一份报告,新的 Flexicore 芯片可以开启一个世界,从绷带到香蕉,一切都可以拥有芯片。
  • 数据显示,苹果M2 GPU性能比M1高50% Apple M2的第一个 CPU 和 GPU 基准测试已经发布,数据显示,M2芯片单核和多核跑分比M1芯片有所提升,而GPU方面M2芯片优势更加明显。
  • 三菱电机开发出世界首个集空间光通信和空间采集于一体 高分辨率卫星图像用于评估灾害造成的损失,但由于此类图像是通过无线电波传输的,受数据容量和卫星天线尺寸的限制,很难实时传输高分辨率图像。因此,需要不需要光纤的大容量、高速空间光通信来支持灾难后快速准确的损害评估。但空间光通信使用非常窄的激光束,约为无线电波的 1/1000,因此挑战在于如何将激光束与高速运行的卫星精确对准。
  • 人工智能的创新发明,专利权属于谁? 随着人工智能技术的发展进步,近几年出现了许多涉及人工智能的发明,如2020 年,机器学习算法帮助研究人员开发了一种对多种病原体有效的抗生素(参见Nature),此外,人工智能 (AI) 也被用于帮助疫苗开发、药物设计、材料发现、空间技术和船舶设计。那么这些由人工智能发明的技术,专利到底归属于谁呢?
  • 工程师常用的5种EDA仿真工具 EDA(electronic design automation)电子设计仿真软件是工程师们在设计电路,验证想法的工具,选择适合工程师的EDA工具对于提升工作效率尤为重要。对此,本文为大家整理了市面上工程师最常用的EDA电路仿真软件。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了