广告

负反馈的魔力

2019-01-15 10:09:02 Sergio Franco 阅读:
我还记得上大学时,在工程学院图书馆里可以看到专门讲放大器的书。放大器在电子产品中绝对发挥着重要作用,许多微小信号都需要放大,例如由天线、麦克风、热电偶、应变仪,甚至人脑和心脏产生的信号。出于某种原因,人们通常认为放大器的增益越高越好。作为老师,我发现学生们总是热衷于比较他们在实验中得到的放大器增益。有一次,一名学生甚至撒谎,向同学们吹嘘他的放大器增益有多大,但看到实验报告数据后,又不得不接受实际上低得多的增益。

我还记得上大学时,在工程学院图书馆里可以看到专门讲放大器的书。放大器在电子产品中绝对发挥着重要作用,许多微小信号都需要放大,例如由天线、麦克风、热电偶、应变仪,甚至人脑和心脏产生的信号。出于某种原因,人们通常认为放大器的增益越高越好。作为老师,我发现学生们总是热衷于比较他们在实验中得到的放大器增益。有一次,一名学生甚至撒谎,向同学们吹嘘他的放大器增益有多大,但看到实验报告数据后,又不得不接受实际上低得多的增益。D28ednc

套用Bob Pease的话来说,我不禁想问:高增益这玩意到底是什么?在许多应用中,太高的增益反而派不上用场(想像一下单位增益反相放大器,它只需执行简单的信号反转就行啦)。“放大器”一词似乎不足以描述关于该主题的所有书(对人文学科的学生来说甚至有点书呆子气)。有一次,我在图书馆看一本有关放大器的书,旁边碰巧有一本莎士比亚的十四行诗,可能是有人翻看后没有放回书架。将这两本书进行对比,我越发觉得关于放大器的书是多么乏味。D28ednc

学了负反馈之后,我才开始意识到高增益的重要性。大约86年前,Harold Black在尝试减少放大器失真时提出了这一里程碑概念。他当时想实现一个接受输入vI并产生输出vO的电路,表示为:D28ednc

EDNT190103_negativefeedback_TA31F1
其中Aideal是所期望的电路增益(不一定很大,正好符合应用需要就行)。在现实世界中,理想值是无法实现的,但我们可以尽可能接近理想值。为了量化,我们需要定义一个误差信号,即: D28ednc

D28ednc

EDNT190103_negativefeedback_TA31F2
然后我们必须设计一种方法来调整vO,以便让vE尽可能接近零。从图1的设计可以看出,Harold Black的想法是通过一个高增益放大器来放大vE,由此产生vO。这称为误差放大器,可以得到: D28ednc

D28ednc

 D28ednc

EDNT190103_negativefeedback_TA31F3D28ednc

 D28ednc

其中aε是预期的放大器高增益。 D28ednc

什么?如果vE是误差,那么vO本身不也是一个误差,而且是一个异常放大的误差吗?你有没有听说过通过赞美误差会得到好的结果?显然,这不是看待问题的最好方式。较好的方法是将注意力从vO转移到vE,将公式改写为:D28ednc

EDNT190103_negativefeedback_TA31F4D28ednc

 EDNT190103_negativefeedback_TA31P1   D28ednc

D28ednc

图1:基本的负反馈方框图。D28ednc

并意识到高aε值的放大器只需要相当小的vE来维持vO(如果将放大器比作双筒望远镜,就像反过来看双筒望远镜一样)。将公式(2)重写为:D28ednc

EDNT190103_negativefeedback_TA31F5
这表明如果vE足够小,vO将非常接近AidealvI。同样重要的是,如果出现任何因素试图增加/减少vE,放大器将通过减小/增加vO作出相反的反应。正是这个小小的“减号”阻止了vO无限制地增大(这是负反馈的秘密!) D28ednc

D28ednc

EDNT190103_negativefeedback_TA31P2D28ednc

图2:(a)不包含和(b)包含放大器的电路,显示在加入放大器后,在aε→∞(即vE→0)时出现新的电压和电流。 D28ednc

图2a的电路中示出了电压和电流。接下来连接一个高增益放大器,如图2b所示,可以看到它是如何改变电压和电流来使vE变小。实际上,在aε→∞时,放大器将迫使vE为零,从而在节点C和A之间建立虚短。这将导致2V信号源和2kΩ电阻产生(2V)/(2kΩ)=1mA的电流。该电流从1kΩ电阻获取,使得vA=-(1kΩ)x(1mA)=-1V。按照KVL,vB=vA+2V=+1V,并且vC=vB–(2kΩ)x(1mA)=-1V=vA。因此确定vE=vA–vC→0。电流通过3kΩ电阻进入放大器输出节点,最后到负电源(未显示)。因此,vO=vC–(3kΩ)x(1mA)=-4V。D28ednc

放大器如何“知道”将vO精确调整到-4V?假如让vO提升1V,从-4V到-3V,使用简单的分压器推理,就发现vC会上升0.5V,vA会上升1/6V,这会导致vE=vA-vC从0V变为-1/3V。这反过来将导致放大器向负方向摆动vO,从而抑制初始电压升高。再比如,将vO变为-5V,这将使vE从0V变为+1/3V,进而使放大器向相反的正方向摆动vO。显然,任何让vO偏离-4V的尝试最终都会遇到一种反作用,它会使vO恢复到-4V,这是放大器处于“平静”状态的唯一值。这就是负反馈。若我们尝试交换放大器的输入端子以使反馈为正,将看到任何让vO摆动离开-4V(假设vO到了那里)的尝试会导致vO偏离,直到放大器最终达到饱和。D28ednc

如果aε不是无限的,比方说aε=1000V/V,会怎样呢?vE仍将很小,使回路电流及各种电压变化非常小。假设vO仍然在-4V附近,从公式(4)可以预测到vE≈-4/1000=-4mV,因此回路电流从1.0mA减小到(2-0.004)/2=0.998mA。使用这个新的电流值重复上述计算步骤,会发现vO从-4V变为-3.988V,这个变化可以忽略不计!D28ednc

 总而言之,负反馈使用高增益放大器不会使vO无限制地变大,而是使vE变小,或者使vE趋于零(理想情况下)。D28ednc

一个指导性示例

我们将上述情形放到一个更实际的框架中,重构一种失真情况,也许能激发Harold Black这样的天才的想象力。在图3a中,我们试图通过单位增益(Aideal=1V/V)推挽式缓冲器来驱动100Ω负载。只要vI>VBE1或vI<VEB2,推挽电路就可以接近单位增益,但在VEB2<vI<VBE1时则为零增益,这将导致图3b中顶部曲线的输出高度失真。图3b底部显示的是误差vE=vI-vOD28ednc

EDNT190103_negativefeedback_TA31P3
D28ednc

图3:(a)推挽式缓冲器;(b)输入/输出波形(顶部)和误差波形(底部)。D28ednc

你是否会考虑通过放大误差vE来降低vO的失真?Harold Black就是这样做的,其结果如图4和图5所示。图4的电路中使用了一个aε=100V/V的前置放大器,以及一根普通电线来反馈vO,并确定输入端误差vE=vI-vO。从图5顶部可以看出其好处,它表明vO现在更接近vI了。如果我们再将aε增加10倍,达到1000V/V,vO的变化会很小,因为它已经非常接近vI了。额外增加10倍的增益只是将vE进一步降低10倍(记住反过来看双筒望远镜这个比喻)。 D28ednc

EDNT190103_negativefeedback_TA31P4D28ednc

图4:将aε提高到100V/V,并用一根线实现Aideal=1V/V的负反馈。D28ednc

失真跑哪儿去了?从图5中间图形的放大器输出vA,可以看出使vO紧密跟随vI放大器所需的扭曲类型。放大器从哪里得到这些扭曲指令?来自图5底部曲线的误差信号,此时vE=vA/100,为数十毫伏。放大器如何设法预失真自己的输入?“这完全是魔力,负反馈的魔力”,我的一个学生在课堂上如此说。我们为这种魔力付出了多大代价?我们实际上浪费了40dB的误差增益,以达到仅1V/V或0dB的总体增益。考虑到这些好处,这个代价非常值得。
EDNT190103_negativefeedback_TA31P5  D28ednc

图5:图4的负反馈电路波形。D28ednc

负反馈充满了令人着迷的细节,一些学生因为急于应付作业和考试而无法充分体会。许多人毕业后将在工作中掌握它们,也有人可能没有机会再深入体验。为了纪念天才Harold Black,我打算专门为工程师撰写一系列教程。我的“analog bytes”系列文章将逐渐增加复杂度,从最基本的内容一直到令人生畏的专题内容,比如在有右半平面零点时的频率补偿。D28ednc

小测验

图6的电路有点类似于图2的电路,只是一旦你连接放大器就会得到vE=0,无论它的增益是大、中、小,甚至是零。你能解释这是为什么吗?不需要数学计算,也不能使用SPICE,只要使用简单直观的推理就行啦。D28ednc

EDNT190103_negativefeedback_TA31P6
图6:加入放大器前(a)后(b)的电路。D28ednc

D28ednc

D28ednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:The magic of negative feedback。)D28ednc

本文为《电子技术设计》2019年1月刊杂志文章。D28ednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Sergio Franco
Sergio Franco是多本书的作者,是一名退休的大学教授,不得已而进入模拟电子行业。Sergio Franco在意大利学习物理专业,毕业后获得了富布赖特奖学金,并作为研究生进入声名卓著的伊利诺伊大学ILLIAC III计算机项目小组工作...后来却发现数字方向的研究职位已经没有了,只剩一个没人感兴趣的模拟方向的职位。因此,Sergio Franco不得不坐在实验室里开始自学模拟知识(晶体管、运算放大器、数据转换器、对数放大器和模拟乘法器)。Sergio Franco的物理背景使他能够用物理视角看待电路,而必要时数学只是一种更严格的验证工具。他用所学的模拟专业知识来设计实时作曲的电子系统(SalMar Contruction)。获得博士学位后,Sergio Franco离开了学术界,并在1980年重回到学术界,致力于培养模拟工程师,期中数百人现在在硅谷工作。除了写书,教书也一直是Sergio Franco最喜欢的职业。欲了解更多关于Sergio Franco的信息,请访问http://online.sfsu.edu/sfranco。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 【闯关答题抽奖】英飞凌无线电力传输方案中心上线啦~ 每闯关成功一关获得一次抽奖机会,总共4关,最多可获得4次抽奖机会。
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • Nothing Phone 1 官方承认品控缺陷,但拆解后有新发现 前一加手机联合创始人裴宇创立的 Nothing 公司在国外备受关注,但Nothing Phone 1发布之后却被网友爆料大量翻车现场。目前官方也已承认了Nothing Phone 1 在前摄开孔位置附近出现了坏点或绿晕的问题。但Nothing Phone 1也并非一无是处,著名的 JerryRigEverything 耐用性测试就称其“超级坚固”。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 【领优秀论文集】Cadence 用户大会已开放注册
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了