广告

人工智能是否会进入测试行业?

2019-07-01 09:28:25 Larry Desjardin 阅读:
暂且不提各种威胁情景,AI有可能在各种模棱两可的情况下帮助做出决策。这不仅仅是遵循自动流程图,这些情况以往通常需要人来进行判断。这就引出了电子测试和测试工程话题。AI在这里有用吗?

无论是叫做人工智能(AI)、机器学习(ML)还是专家系统,AI都已成为今天的新闻热点。Elon Musk曾经警告说,快速采用AI存在潜在风险,而IBM则已在其Watson服务中部署AI,用来处理某些需要进行某种判断的技术问题。科幻小说经常在情节中融入机器智能元素,例如《终结者》系列电影中的天网、《2001太空漫游》中的HAL 9000,或者冷战杰作《巨人:福宾计划》(图1)。GCvednc

暂且不提各种威胁情景,AI有可能在各种模棱两可的情况下帮助做出决策。这不仅仅是遵循自动流程图,这些情况以往通常需要人来进行判断。这就引出了电子测试和测试工程话题。AI在这里有用吗?为了找到答案,我联系了许多公司,就他们的AI工作以及如何看待未来进行了讨论。GCvednc

ednc1907-edncomment-1.jpgGCvednc

GCvednc

图1:《2001太空漫游》中有一台人工智能电脑HAL 9000,它成为了“发现一号”机组人员的敌人。AI变坏的假设例子不一而足,这就是其中之一。那么,测试领域如果有一台这样的新款HAL,它是否会告诉测试工程师说,“对不起,我不能那样重新调整测试顺序”?图片来源:PixabayGCvednc

对于这个讨论,我询问了几个具体问题:GCvednc

• AI是否真的适用?GCvednc

• 今天是否有产品或服务使用了AI?GCvednc

• 未来是否会有产品使用AI?GCvednc

• 如果有的话,哪些应用最有希望?GCvednc

• 您认为提供AI产品和服务有哪些商业模式?GCvednc

• 您公司现在提供哪些AI产品和服务?GCvednc

我的第一个有关AI适用性的问题缺少正面回复。有几家公司只是说他们没有做AI方面的工作,或者至少他们觉得不方便说。所以,我们知道AI在测试领域不是主流,至少现在还不是。GCvednc

从我收到的回复中确实可以看到一个重要的关系:半导体测试行业似乎已在追求AI。GCvednc

泰利达(Teradyne)公司的最优化设计(DfX)经理Mark Hutner和产品经理Yi Zhang一起进行了回答。他们看到AI在两个方面具有应用前景:客户生产经济性和整体设备效率(以避免意外停机)。他们表示:“两者都将通过提高良率和测试覆盖、缩短产品上市时间和优化测试运行时间来为客户创造价值。”他们看到,虽然今天是使用自适应测试根据规则进行测试优化,但是AI在此大有可为。“我们看到测试时间可缩短10%到15%。”GCvednc

在客户生产经济性方面,泰利达认为,AI在观察到初始故障后,可进行良率恢复,从而增加价值。这样可以实现更多测试,恢复不大好的裸片。再结合基于AI的自适应测试,这就会对产品盈利能力产生巨大影响。“良率恢复方法可使平均测试时间得到优化,良率得到恢复,借此,产品盈利能力有望提升超过30%。”Hutner和Zhang表示。GCvednc

由于每个客户的基础设施各不相同,泰瑞达为多种离线数据分析工具提供数据通路。Optimal+是一家为半导体和电子公司提供端到端产品分析解决方案的公司,他们就提供这类工具。我采访了该公司的技术院士Michael Schuldenfrei。GCvednc

ednc1907-edncomment-2.jpgGCvednc

GCvednc

GCvednc

图2:AI可用来找出引起各产地晶圆良率问题的根本原因。图片来源:Optimal+GCvednc

Schuldenfrei指出,Optimal+在其用于半导体制造的若干软件产品中使用AI来汇集多组产地或参数故障特征相似的晶圆,进而识别共同的根本原因(图2)。电子制造领域正使用神经网络来分析各检查步骤的输出,借此提供更好的故障分类。“我们使用AI来找出PCB中的裂缝。”Schuldenfrei表示。AI还可用来预测昂贵或破坏性工序(例如老化)的结果,以便可以跳过已预测通过的部分。GCvednc

Schuldenfrei认为AI未来充满希望。“随着芯片、电路板和产品的复杂性不断增加,制造、组装和测试过程势必产生大量数据。为了获得相关的高价值的见识,人工智能就成为了处理这些数据的关键组成部分。随着电子产品在自动驾驶汽车等关键任务应用方面变得越来越普及,为了因应这方面的质量和可靠性要求,业界将加大对AI领域的投资,以便找出制造过程中潜在的不良器件,而防止用到它们。”GCvednc

Optimal+通过年度订购提供产品。从长远来看,Schuldenfrei预计将会出现数据科学家把他们的AI模型部署到Optimal+等提供的第三方平台,而将它们变现的商业模式。这样的商业模式除了可以将AI部署到故障分析、制造和测试优化以外,还可以包含整个生命周期分析,他把它称为“圣杯”。GCvednc

因此业界已有基于AI的产品。但是半导体公司真的使用AI吗?英特尔的工程总监Rohit Mittal在向EDN投稿的文章《Machne learning improves production test(机器学习改进生产测试)》中谈论了英特尔在机器学习方面的应用。他表示:“本文描述了一种方法,它可以在制造测试期间,使用机器学习算法以及误差补偿裕量,通过常规测量的参数可靠地预测出难以测量的参数。然后,这些预测值可用于在制造测试期间动态设置其他影响良率的参数。这种方法由于不依赖于早期设计验证测试(DVT)所得出的固定规范,还可以检测到由于元器件或工艺变化而产生的质量漂移。”GCvednc

从全局来看就很容易想到,为什么半导体制造业可能最先采用机器学习进行测试。传统的电子制造通常有赖于对已知良好的、预先测试的器件进行组装。从理论上来讲,如果设计正确,只有零件和工艺缺陷才会导致故障。半导体制造却不同——工艺就是一切,包括“零件”的制造。实现高良率需要对多方面进行优化,而机器学习会是有用的工具。GCvednc

ednc1907-edncomment-3.jpgGCvednc

GCvednc

GCvednc

图3:虽然半导体测试看起来已准备好开发人工智能,但电子功能测试的前景并不确定。图片来源:Bloomy ControlsGCvednc

那么,传统的电子制造业呢?这里还有一段路要走。Bloomy Controls的首席技术官Grant Gothing接受了笔者采访。该公司在创建功能测试和数据采集系统方面具有丰富历史。Gothing表示,Bloomy目前使用基于规则的算法来优化生产功能测试系统(图3)。他认为AI是未来的技术,可以帮助对组件进行故障排除。这里他强调的问题是语义:严格来说,基于规则的系统不算AI系统。然而,这类系统在实现许多相同结果方面非常有用。当技术人员排除故障,打开复杂的电子组件时,它们可以为其提供见识和建议。问题是,与基于规则的系统或流程图相比,AI系统还有哪些优势?GCvednc

同时,这里的关键问题是,AI增强型产品是否会在功能测试方面找到重要应用领域。从我自己的观点来看,这也是种财务权衡。毕竟,如果良率变得足够高,是否还有令人信服的理由,要把资源用于修复不工作的组件?或许有,但问题的答案非常取决于环境。GCvednc

那么,回到“人工智能是否会进入测试行业”的问题,我认为这对于半导体行业来说是肯定的。业界已经有产品和成熟的答案。对于研发或制造领域方面的传统电子测试系统,答案尚不清楚。但有件事可以肯定,那就是所有这些工具都是用来帮助工程师,而不是取代他们。工程师不用担心机器会抢了他们的工作,至少现在还不会。GCvednc

本文为《电子技术设计》2019年7月刊杂志文章。原文链接:Will AI come to the test industry?GCvednc

GCvednc

GCvednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Larry Desjardin
Larry Desjardin是Modular Methods LLC公司总裁,这是一家专注于快速增长的模块化仪器行业的咨询公司。Larry 曾任职于惠普(现为Agilent Technologies),担任多个研发和执行管理职位。作为研发经理,Larry 获得了John Fluke Sr. Memorial Award,以表彰他对VXI总线的创建所做的贡献。在2011年退休前,他担任了安捷伦模块化产品运营的总经理。Larry 拥有加州理工学院的工程学士学位和斯坦福大学的电气工程硕士学位。Larry 还为“测试与测量世界(Test and Measurement World)”写了一列“他山之石”专栏。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 因眼睛小车主被辅助驾驶误判“开车睡觉”,小鹏、蔚来回 昨日,汽车博主@常岩CY 发博称自己突然上了热搜,原来就是因自己眼睛小被小鹏汽车自动驾驶误判“开车睡觉”,不住的发出提醒。此外,@常岩CY 称在多款车型上都收到此困扰。无论是红外还是摄像头,只要开始检测眼睛,就会判定过度疲劳。小鹏P7会提示他睡觉,蔚来ET7一开车就认为其疲劳和走神,岚图FREE会在冬天为了让其“别困”而打开冷风……
  • 国际象棋机器人Chessrobot夹断对手手指,意外还是设计缺 据悉,在7月19日的莫斯科国际象棋公开赛期间,一位7岁小男孩疑似因提前走子犯规手,意外被“对手”国际象棋机器人Chessrobot夹住手指,造成指骨骨折,该事件登上了热搜榜。该男孩是莫斯科9岁以下最强的30位棋手之一。
  • “智能家居”未来将可通过呼吸控制操作 凯斯西储大学的研究人员创造了一个简单的原型设备,使用户能够通过改变他们的呼吸模式来控制“智能家居”。这种自供电装置可放入鼻孔,并有可能提高行动不便或无法清晰说话的人的生活质量。如果个人呼吸困难,它也可以编程为医务人员提供自动警报。
  • 核酸采样机器人将取代“大白”?用了哪些技术保证采样准 取棉签、核酸采样、储存核酸采样管、设备消杀……动作精准流畅,今后给你核酸采样的可能不再是“大白”,而是机器人。EDN小编就带大家来看看,目前已被使用的核酸采样机器人有哪些?
  • 一个AI程序就可将手机电池增加30% 一项尖端的人工智能开发可以将智能手机的电池寿命延长 30%。这项应用则是利用 AI 分析正在使用的应用程序的 FPS 变化,并试图找到 CPU 和 GPU 处理器的最佳运行频率以适应变化,同时消耗设备中最少的功率和温度增益……
  • AI视觉芯片如何赋能两轮车出行? 6月29日,在由全球领先的专业电子机构媒体AspenCore和深圳市新一代信息通信产业集群联合主办的“2022国际AIoT生态发展大会-智慧两轮车分论坛”中,嘉楠科技副总裁汤炜伟以《勘智AI视觉芯,赋能智眼两轮行》为主题,向大家分享了嘉楠地芯片设计创新历程,及其RISCV架构AI芯片技术路线图,并以具体案例展示AI视觉芯片如何赋能两轮车出行。
  • 碎片化、成本高是难题,AIoT行业需要哪些改变? 作为AIoT的行业基石,物联网市场到2022年预计将达到 144 亿活跃连接。随着供应限制的缓解和增长的进一步加速,IoT Analytics 最新预测指出,到2025年全球将有大约 270 亿台联网物联网设备。中国物联网链接到2025年也将达到80亿。随着整个AIoT和IoT市场的快速成长与变化,我们将面临哪些风险和挑战?
  • 英特尔张宇:边缘AI有三个阶段,我们还处在山脚 在AspenCore举办的“2022国际AIoT生态发展大会”上,英特尔公司高级首席工程师、物联网事业部中国区首席技术官张宇博士通过视频方式分享了“边缘AI技术发展趋势与展望”主题演讲。
  • 世界上尺寸最大的芯片Wafer Scale Engine-2打破了在单 Cerebras公司售价数百万美元的“全球最大AI芯片”Wafer Scale Engine-2又有新消息,在基于单个Wafer Scale Engine-2芯片的CS-2系统上训练了世界上最大的拥有200亿参数的NLP(自然语言处理)人工智能模型。
  • 婴儿或可帮助解锁下一代人工智能 都柏林圣三一学院的神经科学家及其同事刚刚发布了改进人工智能的新指导原则,他们表示,婴儿可以帮助解锁下一代人工智能(AI)。
  • 日本要利用机器学习实现半导体研究自动化 新型薄半导体材料的开发需要对大量反射高能电子衍射(RHEED)数据进行定量分析,既耗时又需要专业知识。为了解决这个问题,东京理科大学的科学家们确定了可以帮助自动化 RHEED 数据分析的机器学习技术。他们的发现可以极大地加速半导体研究,并为更快、更节能的电子设备铺平道路。
  • 纯视觉自动驾驶更安全?美国交通部发布数据打脸特斯拉 特斯拉的纯视觉自动驾驶到底效果如何?真的如马斯克所说的:“通过摄像头和计算机网络让自动驾驶比人类驾驶更安全”吗?近日美国国家公路交通安全管理局发布了一份新的数据,颇有打脸特斯拉的意味。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了