广告

融合GDT和MOV,Bourns打造创新型过压保护器件

2019-08-13 12:23:56 阅读:
在使用电子电气设备的众多恶劣环境中,雷电是其中的代表。我国某县城的统计数据显示,每年因雷电导致过压造成的设备损坏占整体的70.11%,单一工作单位的损失就可达数十万元。再加上如今消费者对于设备的功能要求越来越严苛和多样,促使电路保护元件已经从最开始的玻璃管保险丝,发展成为庞大的电子元器件分支。

当前,不管是汽车、工业设备、医疗器械、新能源设备、还是家用电器等,其内部元器件的复杂度以及使用环境的恶劣性都在与日俱增。当电气供应不稳定时,如果没有高效稳定的保护措施,小则单一元器件损坏造成设备停机,更严重的后果是整台设备由于过压及相关联的高浪涌电流导致彻底报废,造成巨大的经济损失。T93ednc

在使用电子电气设备的众多恶劣环境中,雷电是其中的代表。我国某县城的统计数据显示,每年因雷电导致过压造成的设备损坏占整体的70.11%,单一工作单位的损失就可达数十万元。再加上如今消费者对于设备的功能要求越来越严苛和多样,促使电路保护元件已经从最开始的玻璃管保险丝,发展成为庞大的电子元器件分支。T93ednc

为了帮助设备厂商应对日益复杂多变的市场环境,提高产品市场竞争力,全球知名的电子元器件制造与供货商美国柏恩(Bourns)推出了GMOV™系列过电压保护元件(以下简称GMOV™系列)。T93ednc

006ednc20190813.jpgT93ednc

007ednc20190813.jpgT93ednc

图:GMOV™系列产品构成图T93ednc

当前,很多器件厂商选择使用金属氧化物压敏电阻(MOV)和气体放电管(GDT)的离散组合,以此提供鲁棒、低泄漏的前端保护方案来应对电压暂态响应。Bourns公司代理商世健公司(Excelpoint)技术支持部副总监Angus Zhao表示:“ Bourns创新地将自家专利且节省空间的FLAT®技术扁平气体放电管(FLAT-GDT)与金属氧化物压敏电阻(MOV)相结合,创造出精巧且增强的过压组合式保护器。GMOV™系列更为紧凑、坚固,满足了严苛的小型化器件要求,结合MOV的高压续流遮断能力的特点,解决了单独采用GDT的续流问题。同时,GMOV™有效地消除由于MOV漏电流或者过电流造成的发热损坏和其他大多数损坏,进而形成一种零待机能耗的保护解决方案。由于极间电容小于4pF,可同时用于电源和一些信号线的防护场景;标准的14mm和20mm封装兼容MOV产品封装,满足UL1449的安规要求的应用场景。”T93ednc

在低频条件下,GMOV™系列的限压等于单个MOV和GDT组件的限压之和。在实际应用中,可提高电路实际的耐压需求。T93ednc

当器件中有浪涌电压时,GMOV™系列里面的GDT能够在不到一微秒的时间内,快速打开并连接MOV,将浪涌电压控制到可接受的水平。当浪涌电压过去,线路电压下降后通过MOV,关闭GDT。一旦GDT关闭,GMOV™系列就会像以前一样断开MOV与线路的连接。GMOV™系列的功能是一种非常特殊的“共生”关系,在这种关系中,GDT和MOV共同工作,这也是其能够长期稳定有效的关键所在。T93ednc

008ednc20190813.jpgT93ednc

图:GMOV™系列线路图T93ednc

相较于MOV器件,GMOV™系列过电压保护元件能够应对瞬态和瞬时过压尖峰,避免在恶劣环境中出现退化和失效的情况,显著增加了MOV的MTBF(平均故障间隔时间),提供更高水平的性能和安全性。GMOV™系列采用标准14 mm和20 mm MOV封装,可直接替代标准14和20 mm MOV。T93ednc

009ednc20190813.jpgT93ednc

图:产品尺寸图(单位:mm)T93ednc

下图是MOV器件和GMOV™系列在实际应用中的表现:T93ednc

010ednc20190813T93ednc

通过图示可以看到,在假定的120 Vrms应用中,标准的130V MOV器件在钳位电压、泄漏、老化特性和对瞬时过电压(TOV)的响应几个方面的表现都是最差的;275V MOV器件能帮助减轻泄漏和老化问题,然而一个瞬时过电压条件仍可能导致过量的泄漏和器件损坏;第三个例子表明当130V TMOV/iMOV器件集成热保护时,基础性能和130V MOV器件相似,但在瞬时过电压来临时,仍然有失效的可能;相比较而言,GMOV™系列的钳位电压和130V MOV器件类似,但优于275V MOV器件,并且泄漏、老化特性和对瞬时过电压(TOV)的响应方面都是表现出优越的性能。T93ednc

下图也让我们比较直观地看到了GMOV™系列在保护设备方面的优越性能。T93ednc

011ednc20190813T93ednc

通过图示可以看到,达到Vfp的钳位转换时间(Clamp Transition Time)表示GDT启动所需的时间,GMOV™系列产品的钳位转换时间能够持续小于0.3µs。T93ednc

综上所述,GMOV™系列非常适用于需要高性能电路保护的交流和直流电源应用。因此,GMOV™系列可用于所有主要市场和垂直行业,如工业、消费品、医疗和通信等。GMOV™系列的应用案例包括电涌保护器件(SPD)、白色家电、充电器、太阳能(新能源储能)、医疗电子(低/中等风险)以及智能电网的电力保护应用的电源和数据端口保护。我们甚至可以这样认为,几乎很多由AC或DC供电的应用都可以使用GMOV™系列进行过压保护。T93ednc

智能电网及能源储能等市场就是一个很好的例子,GMOV™系列能够减少泄漏电流这一产品特性在能源市场有极大的吸引力,特别是在存在电压应力和瞬态过电压的情况下,对于防止由于MOV爆裂造成火灾等安全隐患的需求。此外,GMOV™系列的4pF级电容优势允许电力数据线通信获得异常高的数据速率。T93ednc

 T93ednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了