广告

如何为电源系统开关控制器选择MOSFET

2019-08-29 13:10:02 阅读:
本文将会从基础开始,探讨MOSFET的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等等;最后还会就一些最常见的热门应用为大家做一些介绍。

MOSFET广泛使用在模拟电路与数字电路中,和我们的生活密不可分。MOSFET的优势在于:首先,驱动电路比较简单——MOSFET需要的驱动电流比BJT小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次,由于没有电荷存储效应,MOSFET的开关速度比较迅速,能够以较高的速度工作;另外,MOSFET没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。MOSFET已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。OfVednc

近年来,随着汽车、通信、能源、消费、绿色工业等大量应用MOSFET产品的行业在近几年来得到了快速的发展,功率MOSFET更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司iSuppli表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率MOSFET市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率MOSFET的增长还是会持续一段相当长的时间。OfVednc

技术一直在进步,功率MOSFET市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率MOSFET的性能可提升的空间已经非常有限。不过,GaN对功率MOSFET市场的挑战还处于非常初期的阶段,MOSFET在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,MOSFET市场也不会轻易被新技术迅速替代。OfVednc

五年甚至更长的时间内,MOSFET仍会占据主导的位置。MOSFET也仍将是众多刚入行的工程师都会接触到的器件。本文将会从基础开始,探讨MOSFET的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等等;最后还会就一些最常见的热门应用为大家做一些介绍。OfVednc

MOSFET的选型基础

MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。OfVednc

作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的MOSFET。OfVednc

1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET.在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。OfVednc

mft4swtchctrllr-1.jpgOfVednc

OfVednc

OfVednc

2)电压和电流的选择。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS.设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。OfVednc

在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。OfVednc

3)计算导通损耗。MOSFET器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。OfVednc

4)计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOSFET的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。OfVednc

开关损耗其实也是一个很重要的指标。从下图可以看到,导通瞬间的电压电流乘积相当大。一定程度上决定了器件的开关性能。不过,如果系统对开关性能要求比较高,可以选择栅极电荷QG比较小的功率MOSFET。OfVednc

mft4swtchctrllr-2.jpgOfVednc

OfVednc

OfVednc

MOSFET应用案例解析

1.开关电源应用

从定义上而言,这种应用需要MOSFET定期导通和关断。同时,有数十种拓扑可用于开关电源,这里考虑一个简单的例子。DC-DC电源中常用的基本降压转换器依靠两个MOSFET来执行开关功能(下图),这些开关交替在电感里存储能量,然后把能量开释给负载。目前,设计职员经常选择数百kHz乃至1MHz以上的频率,由于频率越高,磁性元件可以更小更轻。开关电源中第二重要的MOSFET参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。OfVednc

mft4swtchctrllr-3.jpgOfVednc

OfVednc

OfVednc

2.电机控制应用

电机控制应用是功率MOSFET大有用武之地的另一个应用领域。典型的半桥式控制电路采用2个MOSFET(全桥式则采用4个),但这两个MOSFET的关断时间(死区时间)相等。对于这类应用,反向恢复时间(trr)非常重要。在控制电感式负载(比如电机绕组)时,控制电路把桥式电路中的MOSFET切换到关断状态,此时桥式电路中的另一个开关经过MOSFET中的体二极管临时反向传导电流。于是,电流重新循环,继续为电机供电。当第一个MOSFET再次导通时,另一个MOSFET二极管中存储的电荷必须被移除,通过第一个MOSFET放电,而这是一种能量的损耗,故trr越短,这种损耗越小。OfVednc

3.汽车应用

过去的近20年里,汽车用功率MOSFET已经得到了长足发展。选用功率MOSFET是因为其能够耐受汽车电子系统中常遇到的掉载和系统能量突变等引起的瞬态高压现象,且其封装简单,主要采用TO220和TO247封装。同时,电动车窗、燃油喷射、间歇式雨刷和巡航控制等应用已逐渐成为大多数汽车的标配,在设计中需要类似的功率器件。在这期间,随着电机、螺线管和燃油喷射器日益普及,车用功率MOSFET也不断发展壮大。OfVednc

汽车设备中所用的MOSFET器件涉及广泛的电压、电流和导通电阻范围。电机控制设备桥接配置会使用30V和40V击穿电压型号;而在必须控制负载突卸和突升启动情况的场合,会使用60V装置驱动负载;当行业标准转移至42V电池系统时,则需采用75V技术。高辅助电压的设备需要使用100V至150V型款;至于400V以上的MOSFET器件则应用于发动机驱动器机组和高亮度放电(HID)前灯的控制电路。OfVednc

汽车MOSFET驱动电流的范围由2A至100A以上,导通电阻的范围为2mΩ至100mΩ。MOSFET的负载包括电机、阀门、灯、加热部件、电容性压电组件和DC/DC电源。开关频率的范围通常为10kHz至100kHz,必须注意的是,电机控制不适用开关频率在20kHz以上。其它的主要需求是UIS性能,结点温度极限下(-40度至175度,有时高达200度)的工作状况,以及超越汽车使用寿命的高可靠性。OfVednc

4.LED灯具的驱动

设计LED灯具的时候经常要使用MOS管,对LED恒流驱动而言,一般使用NMOS.功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,设计时必须注意栅极驱动器负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。OfVednc

而MOSFET的开关速度和其输入电容的充放电有很大关系。使用者虽然无法降低Cin的值,但可以降低栅极驱动回路信号源内阻Rs的值,从而减小栅极回路的充放电时间常数,加快开关速度一般IC驱动能力主要体现在这里,我们谈选择MOSFET是指外置MOSFET驱动恒流IC。内置MOSFET的IC当然不用我们再考虑了,一般大于1A电流会考虑外置MOSFET。为了获得到更大、更灵活的LED功率能力,外置MOSFET是唯一的选择方式,IC需要合适的驱动能力,MOSFET输入电容是关键的参数。下图Cgd和Cgs是MOSFET等效结电容。OfVednc

mft4swtchctrllr-4.jpgOfVednc

一般IC的PWM OUT输出内部集成了限流电阻,具体数值大小同IC的峰值驱动输出能力有关,可以近似认为R=Vcc/Ipeak.一般结合IC驱动能力Rg选择在10-20Ω左右。OfVednc

一般的应用中IC的驱动可以直接驱动MOSFET,但是考虑到通常驱动走线不是直线,感量可能会更大,并且为了防止外部干扰,还是要使用Rg驱动电阻进行抑制。考虑到走线分布电容的影响,这个电阻要尽量靠近MOSFET的栅极。OfVednc

mft4swtchctrllr-5.jpgOfVednc

以上讨论的是MOSFET ON状态时电阻的选择,在MOSFET OFF状态时为了保证栅极电荷快速泻放,此时阻值要尽量小。通常为了保证快速泻放,在Rg上可以并联一个二极管。当泻放电阻过小,由于走线电感的原因也会引起谐振(因此有些应用中也会在这个二极管上串一个小电阻),但是由于二极管的反向电流不导通,此时Rg又参与反向谐振回路,因此可以抑制反向谐振的尖峰。OfVednc

估算导通损耗、输出的要求和结区温度的时候,就可以参考前文所指出的方法。OfVednc

MOSFET的应用领域非常广泛,远非一两篇文章可以概括。欢迎大家阅读网站更多相关的内容和链接,了解MOSFET在当今发挥的日益重要的作用。OfVednc

(本文授权转载自硬件十万个为什么)OfVednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了