广告

MEMS的未来要靠“纸实力”?

2019-11-01 17:03:33 Anne-Francoise Pele, EE Times欧洲特派记者 阅读:
没有人能准确预测MEMS和传感器的未来,但随着各种新型传感器架构崛起,基于低成本软性基板以及甚至是纸制造的传感器也在不断发展中…

没有人能够准确地预测微机电系统(MEMS)和传感器技术的未来。然而,根据MEMS设计与开发公司A.M. Fitzgerald and Associates LLC.创办人Alissa Fitzgerald表示,目前正持续进展中的学术研究对于将塑造未来20年的新趋势提供了一个有效的指标。如今,各种新型传感器架构正在崛起中,包括基于低成本软性基板——甚至是以纸打造的传感器,也在不断地发展中。mdiednc

Fitzgerald在上周于美国圣地亚哥举行的MEMS与传感器高峰会议(MEMS & Sensors Executive Congress)上对与会观众表示:“学术研究是产业创新的源泉。当今,大多数热门的MEMS产品都来自于学术研究,我们预期这种模式还将继续下去。”mdiednc

她举了很多个例子,包括SiTime的谐振器来自于美国史丹佛大学(Stanford University)、CardioMEMS的植入式压力传感器来自乔治亚理工学院(GeorgiaTech)、Vesper的压电麦克风来自密歇根大学(University of Michigan),还有最近的例子是Chirp的压电微机械超音波换能器,得力于加州大学的柏克莱分校(UC Berkeley)和戴维斯分校(UC Davis)研究团队。mdiednc

Fitzgerald解释说:“我的魔法来自于查看世界各地的顶级学术研究,并过滤超过650篇论文。”至于值得注意的评断标准,她表示看好“商业可行性、问题的解决方案,以及改变游戏规则的技术等。”mdiednc

大多数的技术都还需要更多年的密集开发,并可能需要超过1亿美元的投资,才可能实现完全商业化,但Fitzgerald认为可以确定的是,这些技术都极具潜力,可望在MEMS和传感器产业创造新一波的动能与机会。mdiednc

压电技术

从静电梳状致动(electrostatic comb-drive)架构到薄膜压电架构,种种变革正持续发生中,因为“您将能够获得更好的制程均匀性、更可靠、更高良率与更小占位空间,而且芯片尺寸将变得越来越小。Fitzergald并引用两项最新的薄膜材料创新技术——弗劳恩霍夫硅晶研究所(Fraunhofer Institute for Silicon Technology)专注于多层氮化铝(一种具有很高压电系数的材料),CEA-Leti则已经找到方法,可将锆钛酸铅(PZT)薄膜转移到透明玻璃基板上以取得透明压电结构。mdiednc

041ednc20191101mdiednc

采用薄膜PZT驱动的微镜也很有趣。日本东京大学(University of Tokyo)的研究人员设计了一种3轴微镜,但仅以2轴的机械结构打造,并使用薄膜PZT改变反射镜本身的曲率来控制第3轴微镜。Fitzgerald说:“他们能够进行很大焦距的变化,基本上是一种3D光束转向。”这项技术可望很快地实现商业化。mdiednc

042ednc20191101.jpgmdiednc

(来源:University of Tokyo)mdiednc

薄膜压电材料将可用于致动器、扬声器、触觉和触控界面。“2020年起将会是薄膜压电MEMS的年代。我们看到了大量使用薄膜或氮化铝PZT的装置。我认为压电架构将取代1990年代强大的静电梳状致动架构。”mdiednc

如今,“业界迫切需要更强劲的薄膜压电代工制程,一旦取得后将会尽快导入使用。”但是,Fitzgerald指出,目前还需要进行一些工作才能确保可靠性和可扩展性。mdiednc

事件导向

“嘿,我刚听到您想要的声音!”这就是事件导向(event-driven)传感器的魔力。尽管在等待触发事件时仅消耗零或接近零功率,但这种极低功耗得以消除打造大型传感器网络时的主要障碍之一:电池更换频率太高。mdiednc

Fitzgerald说:“这些传感器令人喜爱之处在于其巧妙运用了物理学…如果您只是想寻找一个事件,您可不想串流传输大量的数据,从而消耗大量功率。”这些传感器有着多种应用,而且可以非常快速地量产。mdiednc

自供电

在更冒险的研究中,Fitzgerald提到了韩国科学技术院(Korea Advanced Institute of Science and Technology;KAIST)将太阳能电池与奈米压印聚合物结合的方法。mdiednc

她解释说:“氢气的存在导致该聚合物的光栅膨胀。研究人员在消除太阳能电池上的光栅后,即可测量电池的电流输出并将其关联至氢气浓度。研究人员已经开发出一种完全自供电的电池,直到开始检测氢气之后才会启动任务。他们希望将其用于监测与氢动力车辆和工业安全应用相关的氢气箱。”mdiednc

043ednc20191101.jpgmdiednc

中国北京大学的自供电传感器则是另一个例子。研究人员开发了一种利用摩擦电效应的自供电触控传感器,这就像有人穿袜子走在地毯上并在摩擦中积累静电荷一样。基本上,在一个触控事件中将两个嵌入电极的聚合物片压在一起,传感器就能检测触控动作的压力和轨迹。Fitzgerald预计,这项技术可望应用于安全辨识、智能墙、机器人触控传感器等方面。但是,目前还无法量产。mdiednc

044ednc20191101.jpgmdiednc

软性

Fitzgerald说,纸是终极的软性传感器。在日本九州岛岛大学(Kyushu University),研究人员正使用喷墨打印机制作一种36气体的传感器数组,其尺寸大约是一张邮票的大小。这种软性传感器能够测量有机分解过程中释放的气体,从而为各种食品安全应用开启了大门。例如,将这种传感器结合到食品包装材料中,可以让消费者掌握食品的新鲜度。mdiednc

045ednc20191101.jpgmdiednc

纸传感器也可以用于检测特定类型的细菌。美国中央佛罗里达大学(University of Central Florida)正在研究3D打印机的下一代技术,以创造基于电讯号的细菌检测传感器。mdiednc

Fitzgerald说:“有趣的是,这些传感器不仅可以检测细菌的存在,还能够分辨出是大肠杆菌、金黄色葡萄球菌还是其他类型的细菌。”mdiednc

这些传感器都在软性的低成本基板上制成,不仅是发展中国家,每一家医院诊所也都可用它来进行快速实时的诊断。它们可以在可生物分解基板上制造一次性使用的抛弃式传感器。mdiednc

046ednc20191101.jpgmdiednc

Fitzgerald说,纸张、塑料和纺织MEMS以及传感器将会在2030年代出现。但是,条件之一在于“我们必须找到如何量产的方法”。mdiednc

微制造技术

为什么最近开始出现大量的纸张、塑料和纺织品传感器研究?Fitzgerald表示,“很多人对于无法使用晶圆厂以及缺少预算感到沮丧,因而发辉创意地在没有无尘室设置的实验室中使用低成本材料进行制造。”这些材料的优势在于易于取得、便宜而且是软性的。mdiednc

“微型晶圆厂”(minimal fab)的概念是所使用的每一种工具都是完全自给自足的,而且无需使用无尘室的环境。“对于专注于小量精密传感器而且每年仅需要1千个传感器的许多客户来说,这是一条可行的制造路径。”她继续说:“许多高性能应用其实并不必采用大型晶圆厂,因为你可能每年只需要进行一次小量制造,但可没有晶圆厂愿意接这样的生意。”mdiednc

同样地,3D打印机开始变得更有效率了。现在,3D打印机能以数十微米的分辨率印制图层,而且还可以用塑料、金属和陶瓷材料进行印刷。如今,人们越来越喜欢将3D打印与硅奈米压印微影技术混合使用,这还可能催生新型传感器。mdiednc

根据Fitzgerald表示,“我们将持续看到混合半导体制造与低成本制造的方法。而且,一旦我们开始利用3D打印机制造,人们可能直接就在家中的车库进行。”mdiednc

当今制造业的基础设施进展正在放缓中。研究人员使用喷墨打印机、3D打印机来制造原型传感器,但他们经常需要采用卷对卷(R2R)打印来扩大规模。但如果我们无法找到某种解决方案,那么纸张、塑料和织物传感器可能还需要十年时间才能量产。Fitzgerald因而呼吁:“我们应该共同思考如何发展传感器制造基础设施。”mdiednc

Fitzgerald说:“对于我们这些从事芯片制造业务的人来说,应该思考如何添加新的软性基板技术,使其成为一种加值的方案,而不是替代方法。而且,一旦我们确定如何扩展这些技术,我认为将会发生一些激动人心的事情。”mdiednc

 (原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:MEMS' Future is Made in Paper,编译:Susan Hong)mdiednc

 mdiednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • iFixit 拆解M2 MacBook Ai:没有散热器,但有用途不明的加 日前,iFixit发表了M2 MacBook Air的拆解视频,表示在M2 MacBook Air 中发现了新增的端口,以及加速度计。
  • 给廉价蒸蛋器DIY出智能温控,烧了多个仿真器和USB HUB后 笔者手上有一台型号为ZDQ-514Q1的小熊蒸蛋器,弹跳式自锁开关。由于这台蒸蛋器水烧干了,温度上升,温度开关断开停止加热;待温度降低之后,温度开关重新闭合,重新加热。 不仅不节能,也不安全。因此笔者考虑,能不能给这台“低配”电器DIY出“智能”模式……
  • 手动拆解十万元的比亚迪“元”,附详细拆解图 大家是不是对手机、电脑等小型消费电子的拆解已经习以为常了?这次有个券商搞了个大动作,动手拆了一辆市场价值十万元的比亚迪“元”,还撰写了一份详细的拆解报告,刷屏了券商、汽车等行业,网友们也大呼“硬核”。
  • 如何评估3D音频解决方案 沉浸式3D/空间音频,与XR/360视频相结合,给您带来宛若置身于茂密深林的视听体验——飘落的细枝在脚下嘎吱作响,一头鹿向东原跑去,当您的目光追着一只红衣凤头鸟而远去时,您能听见它扇动翅膀的声音。精准的头部跟踪有助于提供逼真的用户体验(UX),了解评估解决方案的关键因素,可以帮助您在不断发展的行业中找到方向。
  • 波兰网友拆德国产无线烟感,烟雾探测原来是这样实现! 本文将展示具有433MHz RF通信的CC-80型烟雾探测器的内部,我将指出它的各个部件都有什么作用,还将解释它如何检测烟雾。
  • 采用加速度计的地震探测器 该设备无意取代地质研究所所使用的专业模型,也无法提供对地震事件的精确测量。它有助于在不提供距离或震级的情况下被动地确定地震事件。
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 智能楼宇不只是能源管理 新冠疫情的到来,引发了我们在如何在办公室、工厂和商店等室内环境更智能、安全地进行社交和协作方面更多的思考与讨论。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 基于 MXene 和Borophene(硼墨烯)的第5代智能传感器如何 随着基于 MXene 和 Borophene (硼墨烯)的高级二维材料 (A2M) 的推出,使用 A2M 构建的传感器在各个方面都优于传统传感器。 使用基于 2D MXenes 和 Borophene 的第 5 代智能传感器彻底改变物联网传感器市场。
  • 雷达传感器如何显著提高智能家居的能源效率 智能家居应用和连接设备的数量不断增长,用户的日常生活越来越方便。但是,这却导致了高能耗,因为即使无人在场,这些设备通常也处于长期活跃或待机模式,以便随时投入使用。
  • 拆解:苹果AirTag追踪器 有人猜到这次要拆解什么产品吗?当然是苹果的AirTag追踪设备。既然之前都已经拆解了Tile Mate,当然也只有对AirTag进行同样的检查才算公平,对吧?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了