广告

压电式MEMS麦克风与电容式相比有哪些优势?

2019-11-04 10:52:49 赵明灿 阅读:
在MEMS麦克风中,又分为电容式和压电式两种。压电式比电容式更新。日前,EDN听到有传闻说,对于功耗敏感型应用,压电式MEMS麦克风更优,因为其可以仅通过声音唤醒(压电效应)。那么,今天EDN就为大家捋一捋,压电式MEMS麦克风与电容式MEMS麦克风相比都有哪些优势。

麦克风种类繁多,包括动圈式、电容式、铝带式、碳精式等等,在移动应用中,又以驻极体(ECM)电容麦克风和微机电(MEMS)麦克风最为常见。然而,据了解,MEMS麦克风外形较小,与驻极体麦克风相比,具有更强的耐热、抗振和抗射频干扰性能。因此,MEMS麦克风可以采用全自动贴片(SMT)生产工艺,而大多数驻极体麦克风则需要手工焊接。这不仅可简化生产流程,降低生产成本,而且能够提供更高的设计自由度和系统成本优势。UX9ednc

在MEMS麦克风中,又分为电容式和压电式两种。压电式比电容式更新。日前,EDN听到有传闻说,对于功耗敏感型应用,压电式MEMS麦克风更优,因为其可以仅通过声音唤醒(压电效应)。那么,今天EDN就为大家捋一捋,压电式MEMS麦克风与电容式MEMS麦克风相比都有哪些优势。UX9ednc

据了解,压电技术的主要优势是坚固耐用,不受环境影响,而电容技术存在性能随时间下降的问题——在电容式MEMS麦克风中,如果在振膜和背板之间有颗粒物污染,麦克风的性能将会改变。UX9ednc

压电MEMS麦克风的另一个优势是信噪比更高——目前根据已知的方法,可以获得超过75dB的信噪比,理论上甚至可以超过80dB。UX9ednc

麦克风的信噪比是设计语音系统的瓶颈。目前使用的算法非常复杂,而如果能够提供更好的数据,算法就会变得更加有效。在这类应用中,麦克风需要达到90dB的信噪比,否则同质化现象严重,无法实现更高利润。目前,电容式麦克风的信噪比最高达到70dB。但是,要实现这样的信噪比,需要使用4个MEMS振膜,因此麦克风的封装尺寸将会很大。而压电式MEMS麦克风要实现同样的信噪比,只需要使用一个振膜。同时,这也说明,电容技术可能已达极限。UX9ednc

未来十年内,语音交互将成为智能家居当中互联网与设备的主要交互接口。而在这样的环境中,环境噪声可能介于70%到大于95%之间,因此,要实现精确的语音识别,就需要使用MEMS麦克风阵列。压电式MEMS麦克风可用于室内、户外、烟雾缭绕的厨房等各种环境,这个特性对于大型语音控制与监控MEMS麦克风阵列来说非常关键——在这样的环境中,MEMS麦克风阵列的可靠性会是主要问题。UX9ednc

此外,电容式麦克风系统需要持续监听“Alexa”或“Siri”等关键词,而压电式麦克风则没有电荷泵,因此具有非常短的启动时间——压电式MEMS麦克风能够利用压电元件自身产生的能量来启动麦克风。换句话说,压电式MEMS麦克风可以处于“永久监听”模式,其工作循环周期非常快,能够降低90%的系统能耗。据知,最新款的压电式MEMS麦克风在实现唤醒和监听声音功能时,仅会消耗3µA的电能。这比电池自然放电的能耗还要低得多。未来还有望实现无功耗的语音传感,从而使更多的应用成为可能。UX9ednc

压电式MEMS麦克风优势总结

1. 信噪比行业最高,达70dB,而且还可以提高,而传统的电容式技术已经到顶,必须多膜片叠加才能实现,导致成本高,不可靠。此指标的好处是可以录制很微弱的信号,分两个层面:1. 近处的小信号,比如悄悄话;2. 远处的大声音(传递到麦克风处信号变弱,比如50米开外两个人吵架信号非常微弱),因此适合远距离采集。UX9ednc

2. 防水等级最高达到IPX8(传统的电容式MEMS和驻极体都不防水,需要加防水罩子才可以),这对于助听器行业是刚需——目前的助听器都是加装罩子来防止汗水的进入,从而避免跑步或者走路皮肤出汗的影响。UX9ednc

3. 不怕灰尘,因此麦克风模块厂/终端客户(比如手机客户)的加工车间要求不高,回流焊的锡膏/松香受热蒸发不会造成质量降级。工艺简单,减少返工,这一点主要是针对膜片抖动的有效性来讲,就好比人耳的耳道用棉花堵住,耳膜(等同于MEMS膜)所收到的声音信号的压力变小或者消失,就会听不到声音或者听不清楚。UX9ednc

4. <100μs的快速启动时间,即一上电就马上有信号。这对于现在的云端语音识别很有帮助——信号来回传递的时间缩小,用户满意度得到提升。压电式麦克风的启动时间现在可做到电容式麦克风的1/1000。UX9ednc

5. 灵敏度公差在1dB以内,而且是天生就是这样,不是通过熔断ASIC的内部电路来实现的,更不是通过筛选制造出来的成品来实现的,驻极体麦克风误差在3dB, 电容式硅麦克风在1-3dB不等,所以客户的产品一致性就非常高,不会出现有的产品录制声音有的大,有的声音小。UX9ednc

6. 支持单端和差分输出。UX9ednc

7. 电源抑制比(PSRR)比传统的高30dB。这个是核心指标,不好的话就相当于打座机时听到的“吱吱声”干扰。其原因是ASIC不需要充电泵电路来升压,电容式麦克风则不然。UX9ednc

8. MEMS传感器部分的声学过载点(AOP)可以达到150dB的最大声压级,但由于ASIC是限制,成品规格书一般只声称125dB。此指标越大越好,能够承受风、小孩尖叫、演唱会、足球场粉丝尖叫、关车门等不同场合的大声压级。UX9ednc

001ednc20191104.jpgUX9ednc

驻极体、电容式MEMS和压电式MEMS麦克风规格对比(注:VM1001即Vesper公司压电式麦克风)。图片来源:VesperUX9ednc

 UX9ednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 保真度指标怎样?
赵明灿
赵明灿是EDN China的产业分析师/技术编辑。他在电子行业拥有10多年的从业经验。在加入ASPENCORE之前,他曾在电源和智能电表等领域担任过4年的工程师。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 手动拆解十万元的比亚迪“元”,附详细拆解图 大家是不是对手机、电脑等小型消费电子的拆解已经习以为常了?这次有个券商搞了个大动作,动手拆了一辆市场价值十万元的比亚迪“元”,还撰写了一份详细的拆解报告,刷屏了券商、汽车等行业,网友们也大呼“硬核”。
  • 采用加速度计的地震探测器 该设备无意取代地质研究所所使用的专业模型,也无法提供对地震事件的精确测量。它有助于在不提供距离或震级的情况下被动地确定地震事件。
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 智能楼宇不只是能源管理 新冠疫情的到来,引发了我们在如何在办公室、工厂和商店等室内环境更智能、安全地进行社交和协作方面更多的思考与讨论。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 基于 MXene 和Borophene(硼墨烯)的第5代智能传感器如何 随着基于 MXene 和 Borophene (硼墨烯)的高级二维材料 (A2M) 的推出,使用 A2M 构建的传感器在各个方面都优于传统传感器。 使用基于 2D MXenes 和 Borophene 的第 5 代智能传感器彻底改变物联网传感器市场。
  • 传感器技术在构建实时监控系统中的作用 无线传感器技术正在成为一个有前途的概念,这对每个虚拟市场都有重大影响。随着需要更快计算处理的数据密集型应用的数量增加,对实时监控系统的需求呈指数增长。尽管传感器节点的需求随着应用的规模而扩大,但终端设备却已通过对智能传感器的高效建模不断改进数据处理。
  • 利用热能和振动能为IoT设备供电 热量作为来自发动机、机器和其他来源的浪费副产物通常很容易获得。热梯度采集是捕获环境热量并将其投入使用的过程。在利用环境现象获取能量的众多方法中,利用压电器件将振动转化为电能的方法似乎特别有效,根据尺寸和结构,它能够产生数百微瓦的电能。
  • 压电发声器驱动器如何在更宽广的电池电压范围内提高声 本文讨论的内容为:为了提供必要的驱动电压,对电路有哪些要求;以及相较于电荷泵为基础的方式,以电感器为基础的升压转换器,如何在更广的电池电压范围内,提供更高的输出电压(因而产生更响亮的声音)。
  • 用于自动驾驶的光学雷达技术:科幻小说变成科学现实 许多人都梦想可以轻易穿梭往来不同的地方,这个梦想在影集“霹雳游侠”(Knight Riders)中的人工智能霹雳车“伙计”(K.I.T.T.)或电影“第五元素”(The Fifth Element)中的车辆上得到了充分体现。现代的汽车越来越接近这些未来愿景,而各式各样的传感器技术在其中扮演着重要角色,其中最具潜力的技术是:光学雷达(lidar)。
  • 用于状态监控的高保真振动采集平台 本章内容阐述了MEMS技术的最新进展如何将加速度传感器推到前沿,并且将可以确保将最高质量的振动数据传输至机器学习环境CbM开发平台支持的机器学习流程进行了简单的概述。
  • 德国新型压力传感器使用SiC可工作在600°C高温 柏林 Fraunhofer IZM的研究人员开发了一种压力传感器,该传感器使用碳化硅 (SiC) 可在高达 600&deg;C 的温度下工作。该传感器最初旨在微调喷气涡轮机的燃烧过程,以减少飞机和
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了