向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

如何设计符合整车厂要求的LIN物理层接口电路?

时间:2019-12-16 作者:高杨 阅读:
因为LIN总线是采用主/从结构,所以就有两种与外部总线连接的物理层接口电路结构(主节点和从节点)。因此,如何设计符合整车厂要求的LIN物理层接口电路,就成为需要讨论的重要主题。

局域互联网络LIN(Local Interconnect Network)目前已经成为多数车载控制器的接口,其目的是对CAN总线等其他汽车多路网络形成补充。该总线适用于对网络的带宽、性能或容错功能没有过高要求的应用,例如控制门、座椅以及方向盘控制开关等。LIN总线是采用单主控制器/多从设备的模式,是UART中的一种特殊情况。由于LIN这个主题的涉及范围比较多,我们仅仅对物理层展开讨论。hTCednc

LIN总线的物理层是将车载控制器连接至总线的驱动电路。因为LIN总线是采用主/从结构,一个LIN网络至少由一个主节点和至少一个或多个从节点组成,所以就有两种与外部总线连接的物理层接口电路结构(主节点和从节点)。因此,如何设计符合整车厂要求的LIN物理层接口电路,从而能够通过整车厂的设计评审及工程验收,就成为需要讨论的重要主题。hTCednc

本文就着重深入讨论主/从节点下的LIN物理层接口电路的设计要点。hTCednc

(1)主节点的LIN物理层接口电路;hTCednc

(2)从节点的LIN物理层接口电路。hTCednc

lin-1hTCednc

图1:主节点的LIN物理层接口电路。hTCednc

(1)主节点的LIN物理层接口电路

1可以看到,主节点的LIN物理层接口可以划分成两个元件功能区域:主节点功能元件和ESD保护元件。主节点功能元件包含D1和R1,ESD保护元件包含Z1。hTCednc

此外还有可选器件R2或L1。C1、C2、C3都是电源滤波器件。hTCednc

下面就详细介绍每一个元器件的作用(见1)和设计注意事项。hTCednc

lin-t1hTCednc

表1:主节点的LIN物理层接口电路的元器件的作用。hTCednc

下面来介绍设计注意事项:hTCednc

C1:需要满足容量680pF±10%,电压³100V耐压等级。hTCednc

C2、C3:在这种情况下,C2、C3有两种可能的器件应用情况。第一种情况是位于控制器IC内部的电源滤波,需要满足容量³90nF,电压³100V耐压;第二种情况是,如果用的不是Flexisafe的电容,则需要用两个电容串联并且以垂直布局的方式来设计,C3容量³180nF,电压³50V耐压。hTCednc

D1:主节点的LIN物理层的功能器件,此器件只是在LIN的主节点下才会有。选用耐压³100V、正向电流³100mA的二极管。hTCednc

R1:主节点的LIN物理层的功能器件,用来作为主节点的上拉电阻,此器件只是在LIN的主节点下才会有。可以选用1kΩ的电阻器,考虑到R1会在最差情况下短路到地和降等级设计的要求,将R1的额定功率选为250mW。hTCednc

R2、L1:这两个器件属于可选器件。取决于EMC实验中辐射抗扰度的通过情况,L1通常选用45-105µH、饱和电流为150mA的电感;如果实验通过则直接就用R2(0Ω)直通。hTCednc

Z1:这个齐纳二极管是作为ESD保护的作用。需要选用击穿电压在27V的齐纳二极管,这样才可以使外部的高电压在经过齐纳二极管到达LIN收发器的PIN脚时不至于击穿。以TJA1021(NXP公司)为例,数据手册(见2)中显示LIN引脚最大耐受电压为±40V。为了考虑兼容其他半导体公司的收发器LIN引脚极限值和为了保证一定的设计冗余,用双向的齐纳二极管将外部电压钳位在±27V。还需要注意的是在pcb布线的时候,Z1必须尽可能地靠近连接器,这样才有更好的ESD保护效果。hTCednc

lin-2hTCednc

图2:TJA1021(NXP公司)的数据手册(部分)。hTCednc
hTCednc

lin-3hTCednc

图3:从节点的LIN物理层接口电路。hTCednc

(2)从节点的LIN物理层接口电路

3可以看到,从节点的LIN物理层接口可以划分成两类功能元件:电源滤波元件和ESD保护元件。电源滤波元件中包含C1、C2和C3,ESD保护元件包含Z1。hTCednc

此外还有可选器件R2和L1。hTCednc

下面就详细介绍每一个元器件的作用(见2)和设计注意事项。hTCednc

 hTCednc

lin-t2hTCednc

表2:从节点的LIN物理层接口元器件的作用。hTCednc

下面来介绍设计注意事项:hTCednc

C1:C1是在控制器内部的,需要满足容量220pF±10%,电压³100V耐压等级就可以。hTCednc

C2、C3:在这里C2、C3有两种可能的器件应用情况。第一种情况是位于控制器IC内部,满足容量³90nF,电压³100V耐压;第二种情况是,如果用的不是Flexisafe的电容,则需要用两个电容串联并且以垂直布局的方式来设计。C3容量³180nF,电压³50V耐压。hTCednc

R2、L1:这两个器件属于可选器件。取决于EMC实验中辐射抗扰度的通过情况来选用,L1通常选用45~105µH、饱和电流为150mA的电感。如果实验通过则直接就用R2(0Ω)直通。hTCednc

Z1:这个齐纳二极管是作为ESD保护的作用。需要选用击穿电压在27V的齐纳二极管,这样才可以使外部的高电压在经过齐纳二极管到达LIN收发器的PIN脚时不至于击穿。以TJA1021(NXP公司)为例,数据手册(见2)中显示LIN引脚最大耐受电压为±40V,为了考虑兼容其他半导体公司的收发器LIN引脚极限值和为了保证一定的冗余电压,用双向的齐纳二极管将外部电压钳位在±27V。还需要注意的是在PCB布线的时候,Z1必须尽可能地靠近连接器,这样才有更好的ESD保护效果。hTCednc

综上所述,除了以上的设计需求,还有以下的一些注意事项(并不区分先后顺序和优先级)在设计中必须同等对待。hTCednc

● LIN收发器的布局位置必须尽可能地靠近车载控制器的连接器,其他的IC不允许放置在LIN收发器的附近。hTCednc

● LIN收发器的地,以及滤波电容、齐纳二极管的地都应该和车载控制器共地。hTCednc

● C1、C2必须是MLCC电容或等效的器件。hTCednc

● C2、C3必须尽可能地靠近LIN收发器的电源脚(VCC/VBAT,见13)。hTCednc

● 电容100V耐压要求是对于直接和电池端连接的器件的统一要求,对于和LIN收发器端连接的电容,耐压50V就可以。hTCednc

● 所有ESD器件必须尽可能地靠近车载控制器的连接器。hTCednc

本文为《电子技术设计》2019年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里hTCednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
高杨
近20年在汽车电子TOP10公司经验,特别是在车载控制器领域(多媒体、车身、驾驶辅助及VCU)。曾任职博世汽车专家级工程师,超过10年在汽车零部件(博世和大陆汽车),5+年汽车半导体(德州仪器和英飞凌),历任多种资深(系统、设计、产品)工程师职务。丰富的平台开发(从0到1)及产品开发的工程经验和技术积累。 Ford SYNC第一代的核心硬件工程师,定义和开发了德州仪器(TI)第一款智能高边驱动器(TPS1H100-Q1),填补了公司在汽车电子市场的技术路线和市场空白。 整理和标准化了与设计开发的技术文件,可以直接用于指导设计及融入公司的文件体系中,满足体系审查要求和提高公司的设计流程和管理水平。硬件设计流程管理的模板(45+篇),硬件设计评审和检查清单模板(50+篇)。 企业内训师认证(TTT) ,超过2500页汽车电子设计培训内容PPT,满足从入门、中级及高级汽车电子设计的培训要求,目前在4家企业内部实施过培训,收到了很好的反馈。 目前获得13件汽车电子专利(截止2019年12月)。《EDN电子技术设计》汽车电子专栏作者ednchina.com/author/gaoyang
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 国产特斯拉Model 3刚交付就被曝“减配门” 颇受中国消费者欢迎的国产特斯拉Model 3近日却陷入了消费者维权的风波中。
  • 2020:消费电子产品未来几年趋势预测 一年伊始,正是对未来做些预测的时候。作者对未来几年消费电子产品的发展趋势提出了自己的观点。他认为,深度学习、自动驾驶汽车、5G设备、处理器、电池等将会快速发展,其中深度学习会影响未来的许多应用,包括自动驾驶汽车、网络安全,甚至各国的选举。
  • 为什么AIoT是持续技术创新的必备要素 尽管AIoT的概念相对较新,但是了解在不久的将来它将如何改变我们的日常生活是很重要的。以下是我们期望看到的与AIoT相关的一些机会。
  • 如何在提高精度和延长运行时间的同时提高电池的安全性 近年来,诸如吸尘器、电动工具(如钻头、锯子和螺丝刀)和园艺工具(如割草机、修边机和草坪拖拉机)等消费品已从依靠绳索和墙壁供电转变为无绳设备和充电电池供电。即使是以前没有动力的自行车,现在也在向电池驱动的电动自行车和电动摩托车转变。
  • 深度解读车载USB供电的方方面面 哪有白来的充电方便,都是工程师在幕后想了很多办法。面向未来,不支持USB Type-C接口的汽车不要买。
  • 更智能的存储如何提升自动驾驶汽车的可靠性 自动驾驶汽车的问世将极大地改变我们的出行习惯,并在交通运输行业掀起一场迅猛的变革。汽车行业的数字化转型将带来很多社会效益,例如减少事故、降低碳排放、改善交通流量、降低汽车拥有成本、降低保险费用以及提高燃油效率和出行能力。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告