广告

用模拟电荷泵产生高频高压脉冲

2020-10-14 09:53:02 Gavin Watkins 阅读:
最近有一个项目评估了5G动态负载调制(DLM)射频功率放大器的可行性。DLM放大器通常会在其输出网络使用高压变容二极管,从而需要用高速大线性电压脉冲来驱动。

最近有一个项目评估了5G动态负载调制(DLM)射频功率放大器的可行性。DLM放大器通常会在其输出网络使用高压变容二极管,从而需要用高速大线性电压脉冲来驱动。jctednc

脉冲需要具有+80V的峰值电压并进行直流耦合,因此无需使用变压器。该电路也必须是线性的,以便在其输出端准确地重现输入脉冲的形状。传统的运算放大器无法产生较大的输出电压摆幅,因此肯定不能产生高频。尽管存在一些混合模块,例如Apex Microtechnology的产品,但它们的电流消耗很高,无法满足项目要求。jctednc

图1所示的电路是受电容式电荷泵电路所启发的[1],这种电路广泛用于电源而产生高电压或负电压。图1使用运算放大器代替开关来实现线性工作。这个设计使用了三个级,但也可以级联更多的级来获得更高的输出电压。jctednc

jctednc

图1:这种模拟电荷泵使用运算放大器代替开关来实现线性工作。jctednc

理论上,用+30V电源产生90V电压摆幅只需三个级。但是,实际上,由于二极管的压降和运算放大器输出级的限制,这是不可能的。设计中使用的LM6171运算放大器,其最大输入和输出电压必须限制在其电源轨电压以下2V,以防止发生闩锁。不幸的是,对于轨电压大于12V的情况,目前还无法实现全轨到轨摆幅的高速运算放大器。为了适应这一限制,设计中已加入了压降,从而将运算放大器的输出摆幅限制在6至76V之间。jctednc

图1中,放大器IC1的增益为8.3V/V,以将输入信号放大至26V峰峰值。这样就可以驱动C1,而与D1形成电荷泵。它们为IC2提供电源电压。差分放大器IC2对其自身的电源电压和+30V电源之差提供检测。当IC1的输出上升时,IC2会检测到这个信号而同样上升,从而以1.9V/V的增益有效放大IC1的输出。其输出在4V至54V之间摆动。IC3及其相关电路执行类似的操作。电阻值是通过检查最小和最大输出电压摆幅下的电路电压来计算的。jctednc

代表性结果如图2所示,其中输入是一个100kHz脉冲,其上升和下降时间为1μs。输出在6至72.8V的峰值摆幅范围内对输入进行线性跟踪。如前所述,这个电路是为驱动变容二极管而设计的,这种二极管具有高阻抗,因此驱动它们所需的电流很小,而在LM6171的能力范围以内。jctednc

jctednc

图2:实测模拟电荷泵输入(Vin)与输出(Vout)波形。jctednc

如有必要,可通过并联使用多个运算放大器来增加输出电流[2]。这种设计的一个缺点是,输出必须保持足够长时间的低电平,以使电容器完全充电,以便在峰值期间提供足够的电流。jctednc

参考文献

  1. Newnes Electronics Circuit Pocket Book, Marston, R., ISBN 0750608579, pp. 159-162.
  2. "Doubling the Output Current to a Load with a Dual Op Amp," Renesas Application Note AN1111.

(原文刊登于EDN美国版,参考链接:Analogue charge pump produces high-frequency, high-voltage pulses,由赵明灿编译)jctednc

本文为《电子技术设计》2020年10月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里jctednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何大幅提高物联网设备的电池能效 本文探讨了如何使物联网(IoT)设备更加节能。在重点介绍毫微功耗运输模式和睡眠模式的关键作用之前,快速回顾了电池管理。 最后,提供了一种新的解决方案,与传统方法相比,它可以更好地优化电池管理的这两个方面,从而降低功耗水平和电路板空间。
  • MWC 2023落下帷幕,盘点国产厂商的那些亮眼表现 MWC 2023(世界移动通信大会2023)于2月27日在巴塞罗那正式向全球移动产业伙伴开启,大会也于3月2日正式落下帷幕。展会持续五天,根据官方数据统计,2023年MWC有2000多家全球厂商参展,中国有以OPPO、荣耀为代表的共计28个国产厂商参展。本次展会,各大厂商纷纷拿出自己的看家本领,可谓是亮点多多,今天就带大家一起看看展会上国产厂商展现的那些亮眼技术吧~
  • IEC 61000-4-3标准的步进频率 本文重点在于讨论如何使用更简略的步骤进行IEC 61000-4-3标准的EMI/EMC测试,以加快产品开发时间...
  • 比科奇在MWC 23上为全球市场带来高性能低功耗的商用5 现场展示了近十家中外客户基于PC802 PHY SoC开发的5G/4G小基站系统
  • CEVA宣布推出其迄今功能最强大、效率最高的DSP架构, 满 全新CEVA-XC20延续了CEVA在数字信号处理器领域的行业领导地位。这款DSP架构采用新颖的矢量多线程计算技术,与前代产品相比,可将功率和面积效率提升多达2.5倍。这个高度可扩展DSP架构瞄准5G-Advanced eMBB设备、智能手机和蜂窝RAN设备的密集基带计算用例
  • Win11端Phone Link添加新支持,iPhone能在PC端接打电话 3月1日,微软宣布,为Win11平台上的Phone Link应用程序添加对iPhone的支持。用户通过该应用程序连接PC和iPhone之后,可以在PC端拨打和接听电话、发送和接收短信、直接在PC上查看iPhone的通知。预览版要求Phone Link应用程序版本1.23012.169.0或更高版本。
  • 具过载保护功能的USB供电433.92MHz RF低噪声放大器接 本电路是一个双级RF低噪声放大器(LNA),针对433.92MHz ISM频段中的接收器信号链进行了优化。
  • 恩智浦借助RapidRF加速5G设计 Open RAN(O-RAN)发展势头强劲,在全球迅速普及,恩智浦通过打造增强型参考设计,助力5G O-RAN的快速部署。这包括采用恩智浦RapidRF Smart LDMOS前端解决方案(称为“SL系列”)将射频功能集成到客户的设计中。
  • 东方国信基于比科奇PC802 PHY SoC的5G一体化皮基站 基于比科奇PC802 PHY SoC的东方国信5G一体化皮基站可提供更高的部署灵活度和优异的上下行速率
  • 我国首颗超100Gbps容量的高通量卫星,中星26号发射成功 2月23日19时49分,我国在西昌卫星发射中心,使用长征三号乙运载火箭,成功将中星26号卫星发射升空。它是我国首颗超100Gbps容量的高通量卫星,是国内卫星互联网技术发展的一个重要里程碑。
  • 谷歌达成量子计算机第二里程碑,实现量子计算纠错 2月24日,谷歌CEO Sundar Pichai撰写博客,称公司量子计算又向前迈了一大步。谷歌量子AI团队有史以来首次通过实验证明:可以通过增加量子比特的数量来减少错误。在其最新的研究中,谷歌用49个物理量子比特制作的逻辑量子比特超越了用17个量子比特制作的逻辑量子比特。
  • 与苹果、高通一较高下,三星宣布已掌握自己的卫星连接技 虽然三星的Galaxy S23 系列并没有提供卫星通讯功能,但可提供卫星通讯功能的三星智能手机已经不远了。据EDN电子技术设计了解,三星周四宣布,它已经采购了能够在智能手机和卫星之间进行直接通信的技术。该技术将集成到三星的 Exynos 调制解调器中,并将允许对话和紧急援助。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了