广告

出色的音频性能如何实现? 即插即用的数字D类放大器少不了

2023-01-11 12:30:02 ADI杰出工程师Matt Felder 阅读:
新一代即插即用的数字D类音频放大器的性能远远优于传统的模拟D类放大器。更重要的是,数字D类放大器还具有低功耗、低复杂性、低噪声和低成本的优势。

新一代即插即用的数字D类音频放大器的性能远远优于传统的模拟D类放大器。更重要的是,数字D类放大器还具有低功耗、低复杂性、低噪声和低成本的优势。axzednc

电子产品生产商通常使用不带滤波器的高效率模拟D类放大器来满足手机、平板电脑、家用监控和智能音箱中便携扬声器的功率需求。这些D类放大器可直接连接到电池,以尽可能地降低损耗并减少组件数量。这些放大器还可实现大于80dB的电源抑制比,这对于避免GSM通讯的217Hz干扰来说非常重要。axzednc

模拟D类放大器一般需要在处理器侧使用DAC和线路驱动放大器(图1),这会增加芯片成本和功耗,并导致扬声器的输出噪声。这种D类放大器还要求良好的电路板布局设计,以避免信号耦合到模拟电路而导致性能下降。axzednc

axzednc

1.使用模拟D类放大器的常规系统。处理器DAC和线路驱动放大器会增加成本、功耗和扬声器输出噪声。axzednc

数字D类音频放大器则不需要特殊的电路板布局设计。这些单通道D类放大器可以放置在电路板上的较远位置,以最大限度地减少电池和扬声器负载之间的走线。这些放大器不需要模拟D类放大器所必需的DAC和线路驱动放大器,可以降低尺寸和成本,设计更为简单。axzednc

简化系统设计

大多数数字放大器接收脉冲编码调制(PCM)或I2S数据输入时,需要三根连接线:BCLK、LRCLK和DIN。PCM格式的输入不需要在处理器侧使用调制器或对数据进行上采样(图2)。较早的PCM输入的放大器需要干净的主时钟(MCLK)以生成无抖动的采样时钟,而较新的PCM输入的放大器,如MAX98357、MAX98360和MAX98365等,则不再需要MCLK输入,因此引脚数、功耗和电路复杂度都大大降低。axzednc

axzednc

2.PCM输入的数字D类放大器系统只需要使用三根连接线,而且处理器不需要调制器或对数据进行上采样。axzednc

较早的数字放大器提供可调的采样速率和/或位深度,因此在某些情况下需要对放大器进行复杂的编程。新一代的数字放大器则可以自动检测各种采样速率和位深度,支持自动配置,无需任何编程。axzednc

在多通道的实现方案中,数字D类音频放大器可以减少电路板上的外围电容和布线。PCM输入只需要BCLK、LRCLK和DIN三根连接线就可以输出立体声或8通道的TDM数据。而相比之下,模拟D类放大器一般需要两个差分输入信号共四根连接线,还需要额外的交流耦合电容(见图1和图2)。axzednc

大多数数字放大器同时需要较低的数字电源电压(1.8V)和较高的扬声器电源电压(2.5V至5.5V)。但是使用MAX98357和MAX98360等单电源供电的D类放大器可以简化电路设计并减少元件数量。MAX98365可以采用3.0V至5.5V的单电源供电,也可以采用1.8V至5.5V和3.0V至14.0V的双电源供电。数字输入的逻辑电平独立于器件的电源电压,输入逻辑电平可以是1.2V至5.5V之间的任何值,无需逻辑电平转换器。axzednc

抖动容差和时钟

数字D类音频放大器通常面临时钟抖动的新挑战。为了获得良好的音频质量,大部分数字输入放大器要求相当低的BCLK或MCLK的时钟抖动。数据手册通常不会具体给出抖动容差的数值,如果给出,典型值约为200ps的均方根抖动。较高的时钟抖动通常会降低放大器的动态范围或满量程THD+N性能。axzednc

在许多系统中,处理器的基准振荡器频率不是BCLK的简单倍数,因此为放大器提供低抖动的时钟并不容易。例如,13MHz是GSM电话的常见晶振频率、27MHz则通常用于视频解决方案,这些基准频率都不是44.1kSPS或48kSPS的音频采样速率的简单倍数。因此,系统通常采用复杂的小数N分频锁相环来生成音频专用的时钟。在某些情况下,该解决方案需要单独的音频基准振荡器,这会增加系统复杂性和物料成本。axzednc

另一种更好的解决方案是使用能容忍高时钟抖动而不降低音频性能的数字放大器。这种放大器可降低系统的复杂性。在最简单的情况下,可以使用跳周期时钟来产生BCLK,但这会产生异常高的抖动。如果跳过13MHz的基准时钟周期产生6.144MHz的BCLK(48kSPS × 128OSR),则峰值抖动可达38.4ns,均方根抖动可达22.2ns(图3),这比大多数DAC所能承受的抖动还要高出两个数量级。axzednc

axzednc

3.来自25MHz时钟跳周期生成12.288MHz MCLKaxzednc

然而,新型的D类音频放大器即使在这样的时钟抖动下仍具备大于103dB的动态范围性能。跳周期时钟可通过处理器上的逻辑门电路来生成。新器件不需要锁相环解决方案必需的振荡器或环路滤波器。参见图4。axzednc

axzednc

4.小数N分频锁相环与跳周期时钟实现axzednc

抖动容差测试结果

测试结果表明,使用跳周期时钟时,MAX98357、MAX98360和MAX98365的动态范围不会降低。此时,器件的动态范围性能比120dB的DAC还高出20dB。Σ-Δ型DAC抖动容差的更多详细数据可参见参考文章1axzednc

axzednc

5.动态范围下降,跳周期时钟抖动为11.5ns rmsaxzednc

结语

数字无滤波D类音频放大器支持简单的电路实现,无需额外的I2C编程、MCLK输入、电平转换器和EMI滤波器,具有高效率、低EMI和高输出功率的特色。MAX98357和MAX98360采用WLP或QFN封装,输出功率可达3.2W。MAX98365采用WLP封装,输出功率可达17.6W。axzednc

参考资料

1Matt Felder, Patrick Gallagher, and Brian Donoghue. “Analyzing Audio DAC Jitter Sensitivity.” EDN Network, September, 2012.axzednc

# # #axzednc

关于ADI公司

Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。更多信息,请访问www.analog.com/cnaxzednc

关于作者

Matt Felder于2009年加入ADI公司,担任模拟设计工程师。他的工作范围包括音频DAC、音频ADC、多通道SAR ADC、音频放大器、视频DAC、FM无线电接收器和电池充电器。Matt是IEEE的高级会员,持有47项已发布的专利。他拥有德克萨斯农工大学的电气工程学士学位和德克萨斯大学奥斯汀分校的电气工程硕士学位。axzednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何避免音频信号处理中的常见错误 音频信号处理产品的设计和编码软件有其独特的挑战。那么,开发人员最常犯的错误是什么?如何避免这些错误呢?
  • 苹果全方位布局VR/AR专利,头显设备未来可期 苹果近期不断更新的专利信息所涉及的AR/VR相关技术,透露出了苹果对首款头显产品的重视。
  • 简化嵌入式ADC的测试 几年前,我需要一个快速、低频而又失真极低的源来测试板载微控制器(MCU) ADC,看它是否具有数据手册中所说的有效位数(ENOB)和线性度。虽然可以构建分立式振荡器电路,但这种模拟方法很繁琐,绝不能实现快速设置。这让我开始思考专业音频分析仪如何实现它们的源。
  • 面向高精度测量 如何实现节能模数转换 本文介绍了一种用于高精度测量应用的低功耗模数转换器(ADC)解决方案,即SAR-ADC或Σ-Δ ADC。因为在低功耗应用中,节省的每一毫瓦都将是有用的。
  • 拆解:亚马逊第四代Echo Dot有哪些设计改进? 亚马逊推出第四代Echo Dot时专注于提高音频质量,因此我必须要为自己购买一个,专门用于拆解目的。我怀疑第四代Echo Dot的体积比其前身更大意味着扬声器后面有更大的声学悬架腔体,这是亚马逊声称以低音为中心的声波改进的根本原因。
  • 苹果自研“失败”,iphone15将继续使用高通5G基带 根据DigiTimes的一份报告,iPhone15系列将继续采用高通5G调制解调器,因为苹果仍在继续开发自家的定制芯片。
  • 误差矢量幅度(EVM)测量怎样提高系统级性能 大多数射频工程师都会接受有关大量射频性能参数的培训,例如噪声系数、三阶截取点和信噪比。了解这些性能参数对整体系统级性能的综合影响可能极具挑战性。EVM不评估多个单独的性能指标,而是反映整个系统的概况。在本文中,ADI将分析较低水平的性能参数如何影响EVM,并研究一些将EVM用于器件系统级性能优化的实际示例。同时展示如何实现比大多数通信标准目标低15dB之多的EVM。
  • 我国利用磁光力混合,实现可调谐微波—光波转换 据科技日报消息,中国科学技术大学郭光灿院士团队的董春华教授研究组将光力微腔与磁振子微腔直接接触,证明该混合系统支持磁子—声子—光子的相干耦合,进而实现了可调谐的微波—光波转换。
  • 数字电容器 IC 如何简化天线调谐? 天线调谐要求的源阻抗和负载阻抗共轭匹配,从无线技术诞生开始一直延续至今,而今已经演变成一种新的、更具挑战性的形式。
  • 如何在高压应用中利用反相降压-升压拓扑 对于需要生成负电压轨的应用,可以考虑多种拓扑结构,如“生成负电压的艺术”一文所述。但是,如果输入和/或输出端的绝对电压超过24V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。
  • 利用CMOS触发器“标签外”用法实现精密电容传感器 当涉及到药品时,“标签外”一词表明了某种药物(经常被发现)的不同于最初开发的实际而有益的用途。电子元器件也会出现这种情况,例如古老的CD4013B双D CMOS触发器。尽管将4013标记为传统的双稳态逻辑元件,但它却能用作模拟器件而具有极好的标签外潜力。
  • 意法半导体发布车规音频功放芯片,为紧急救援、远程信 FDA803S和FDA903S是意法半导体FDA(纯数字放大器)系列中最新的单通道全差分10W D类音频功率放大器。目标应用包括紧急道路救援、远程信息处理等需要音频通道产生最高10W标准输出功率的语音、音乐或提示消息的任何汽车系统。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了