广告

磁子电子学新突破,可用于芯片和雷达的光诱导磁子态

2023-03-13 14:12:49 综合报道 阅读:
日前,据上海科技大学官网消息,上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态(pump-induced magnon mode, PIM)。

日前,据上海科技大学官网消息,上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态(pump-induced magnon mode, PIM)。该成果以《一种与沃克模式强相互作用的光诱导磁子态》(Unveiling a Pump-Induced Magnon Mode via Its Strong Interaction with Walker Modes)为题发表在物理学领域旗舰期刊《物理评论快报》(Physical Review Letters)上。据称,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。Wxhednc

随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。Wxhednc

3月30日,AspenCore将在上海举办国际集成电路展览会暨研讨会(IIC Shanghai 2023),同期举办的“EDA/IP 与 IC 设计论坛”,为大家提供一个高效交流的互动平台,欢迎感兴趣的朋友到场交流。点击这里报名。Wxhednc

Wxhednc

磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。Wxhednc

而铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。Wxhednc

该研究团队发现,在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(如图(a)),该自旋波可被命名为“光诱导磁子态”。光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b)),并且能被激励微波调控,当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c))。同时,光诱导磁子态还具有丰富的非线性,这种非线性会产生一种新型磁子频率梳(图(d)),相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。Wxhednc

Wxhednc

图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系,(d)光诱导磁子非线性效应引发的纯磁子频率梳Wxhednc

据团队负责人陆卫教授介绍:“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”Wxhednc

随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。Wxhednc

3月30日,AspenCore将在上海举办国际集成电路展览会暨研讨会(IIC Shanghai 2023),同期举办的“EDA/IP 与 IC 设计论坛”,为大家提供一个高效交流的互动平台,欢迎感兴趣的朋友到场交流。点击这里或扫码报名:Wxhednc

Wxhednc

责编:Ricardo
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 中国科学家刷新纪录,达成百兆比特率的实时量子密钥分发 近日,中国科学技术大学潘建伟、徐飞虎等与上海微系统所、济南量子技术研究院、哈尔滨工业大学等单位的科研人员合作,通过发展高保真度集成光子学量子态调控、高计数率超导单光子探测等关键技术,首次在国际上实现百兆比特率的实时量子密钥分发,实验结果将此前的成码率纪录提升一个数量级。
  • 苹果A17跑分牙膏挤爆了,安卓想追平任重而道远 近几代苹果的手机处理器在性能方面的变化可以说并不是很明显,特别是新一代的A16只有iPhone 14系列的Pro和Pro Max版本才能用,让人不得不觉得苹果这几年都在“挤牙膏”。 不过根据近日YouTuber @Max Tech分享的信息,苹果搭载A17的工程机在Geekbench 6单核、多核跑分数据呈现出了飞跃式的提升。
  • 实现615公里双场量子密钥分发,我国科学家首创开放式新 EDN小编从北京量子信息科学研究院官方公众号获悉,近日,该院袁之良团队首创量子密钥分发开放式新架构,采用光频梳技术,成功实现615公里光纤量子通信。该架构在确保量子通信安全性的同时,能大幅降低系统建设成本,为我国建设多节点广域量子网络奠定基础。相关成果日前发表于国际学术期刊《自然-通讯》。
  • RS-485收发器常见问题解答 您是否希望学习 RS-485 收发器的设计教程?本文基于 TI E2E™ 社区中的常见问题提供了一些解答,对于任何希望详细了解此通信标准的人来说都是非常有用的资源。
  • 意法半导体推出多款天线匹配射频集成无源器件 全面提 2023 年 3 月 8 日,意法半导体发布了九款针对 STM32WL无线微控制器 (MCU)优化的射频集成无源器件(RF IPD)。新产品单片集成天线阻抗匹配、巴伦和谐波滤波电路。
  • 英国公布新《科学技术框架》,确定5项关键技术组合 当地时间3月6日,英国政府公布新的《科学技术框架》,并表示将同时采取一系列新措施,投入3.7亿英镑(1英镑约合1.2美元)支持资金,促进创新投资,吸引世界上最优秀人才。
  • Microchip推出新一代PoE交换机,为户外应用增加先进的网 PDS-204GCO是广受欢迎的PDS-104GO的下一代解决方案,易于安装且环保
  • CEVA宣布推出其迄今功能最强大、效率最高的DSP架构, 满 全新CEVA-XC20延续了CEVA在数字信号处理器领域的行业领导地位。这款DSP架构采用新颖的矢量多线程计算技术,与前代产品相比,可将功率和面积效率提升多达2.5倍。这个高度可扩展DSP架构瞄准5G-Advanced eMBB设备、智能手机和蜂窝RAN设备的密集基带计算用例
  • Gridspertise和意法半导体20年合作新里程,赋能美国等地 意法半导体面向家庭的直接电力线通信(power line communication)通道将用于Gridspertise为美国市场开发的智能电表;赋能终端客户积极参与能源市场转型,促进分布式可再生能源整合和智能能源管理系统发展
  • Arteris FlexNoC 5物理感知NoC IP,物理融合速度快5倍 据Arteris官网消息,系统IP供应商Arteris宣布推出物理感知片上网络(NoC)互连IP Arteris FlexNoC 5,可使SoC架构团队、逻辑设计人员和集成商能够整合跨功率、性能和面积(PPA)的物理约束管理,以提供连接SoC的物理感知IP。该技术使物理融合速度比手动优化快5倍,且布局团队可以减少汽车、通信、消费电子、企业计算和工业应用的迭代次数。
  • 我国首颗超100Gbps容量的高通量卫星,中星26号发射成功 2月23日19时49分,我国在西昌卫星发射中心,使用长征三号乙运载火箭,成功将中星26号卫星发射升空。它是我国首颗超100Gbps容量的高通量卫星,是国内卫星互联网技术发展的一个重要里程碑。
  • NVIDIA:超级算力,赋能整车中央计算 由全球电子技术领域知名媒体集团AspenCore主办的“中国国际汽车电子高峰论坛”于2023年2月23日正式拉开帷幕。会上,NVIDIA中国区软件解决方案总监卓睿分享了题为“超级算力,赋能整车中央计算”的主题演讲。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了