广告

“后摩尔”技术包含哪些?从ISSCC 2021说起

2021-05-20 13:31:36 矽说 阅读:
什么是“后摩尔”?为什么“后摩尔”要提升到国家战略程度?“后摩尔”技术包含哪些?本期矽说小编就来谈一谈我眼中的后摩尔。

最近的一则新闻把一个原本在学术界的词汇——“后摩尔”拉升到了公众视野。P1qednc

什么是“后摩尔”?为什么“后摩尔”要提升到国家战略程度?“后摩尔”技术包含哪些?本期矽说小编就来谈一谈我眼中的后摩尔,因为一直欠着大家一篇ISSCC 2021的review,正好有机会借着这个话题来一起讨论下。P1qednc

后摩尔定义:尺寸微缩的边际效应递减

历史上的摩尔定律,一般分为两个阶段,第一个阶段是从Gordon Moore提出摩尔定律开始,到2000年前后,这个阶段一般称为 Full Scaling或者恒定电场微缩阶段,这个阶段的摩尔定律是温馨且甜蜜的童话,所有的性能指标都微缩,单位面积上的发热量保持不变。P1qednc

PPA(Power/Performance/Area),无论哪个都在有条不紊提升。P1qednc

也正是这个时期开始,芯片厂商们意识到,押注摩尔定律稳赚不赔,就像投资北上广深的房价。P1qednc

P1qednc

 P1qednc

然而好景不长,由于晶体管的阈值电压在到100nm以后几乎无法下降,Full scale的摩尔定律遇到了阻碍。P1qednc

于是一种新的摩尔定律产生——我们一般称为恒定电压微缩。P1qednc

虽然尺寸还在变小,速度还在变快,但是恒定电压微缩下,单位面积下的发热量是随微缩节点平方率上升。P1qednc

换言之,这样的摩尔定律一定带来芯片发热的爆炸。如果我们芯片充分利用微缩带来益处,小小芯片很可能其发热密度能赶上核电站甚至是火箭推进器。P1qednc

P1qednc

问题来了,20nm以下的工艺发展,且不论能否造出来,假设CMOS器件制造无碍,能否继续享受摩尔定律器件微缩带来的芯片性能的上升红利?P1qednc

由于发热宛如小火炉现象,实际摩尔定律发展边际效应已然递减。而且,更现实的问题是设计成本。P1qednc

20nm以下的工艺采用FinFET/GAA等立体结构,无论数字还是模拟电路,设计难度指数级上升,设计成本更是让一般的芯片公司望洋兴叹。P1qednc

一颗5nm SoC的设计成本是28nm的10倍之多。相比之下,带来性能跃迁只有2、3倍。从经济的角度,除了少部分出货量超过100KK的芯片,大部分芯片的微缩已经停滞在了28nm节点上下。P1qednc

当然,这种停滞还可能源于某些国际政治的因素。比如某西方大国不让我们的某实力大厂在某岛的代工厂上流14nm以下的工艺等。还有就是,2nm以下的芯片能不能造出来,大家也没啥谱。毕竟已经是十几个原子的事情了,现在基于量子力学的半导体物理理论管不管用还两说呢。P1qednc

 P1qednc

总而言之,所谓“后摩尔”指的就是当摩尔定律对于大部分芯片设计公司来说已经停滞时,有没有什么颠覆性技术可以让芯片在没有尺寸微缩的前提下继续保持PPA的提升。P1qednc

简单而言,可以从器件、架构、集成方法的角度来讨论后摩尔的关键技术。P1qednc

后摩尔器件:CMOS工艺的百尺竿头

既然CMOS器件在先进节点已经如此挣扎,那“后摩尔”时期,是否可以找一些能和CMOS工艺的兼容的新器件代替传统的MOS器件呢?这一想法的率先在存储器中完成落地。P1qednc

ISSCC 2021中,中科院微电子所在14nm FinFET工艺节点上,用忆阻器实现的阻变RAM(ReRAM)代替了传统的基于Flash 浮栅MOS管P1qednc

在CMOS兼容的工艺里,采用新原理器件实现了FinFet工艺的非易失存储。P1qednc

相比之下,Flash工艺在28nm,甚至40nm就已经达到了工艺微缩的极限。P1qednc

 P1qednc

P1qednc

不仅用于存储,由于ReRAM的器件具有电阻特性,与电流、电压可通过欧姆定律、基尔霍夫定律实现乘和累加的物理关系,因此可被广泛用于并行模拟计算电路中,这种电路也被称为存算一体P1qednc

ISSCC 2021中,台湾清华大学通过数模混合的计算电路,首次基于ReRAM的实现8位的存算一体电路,且能效保持在11TOPS/W。P1qednc

其电路模块结构如下所示:P1qednc

P1qednc

 P1qednc

后摩尔架构:算法与电路的紧耦合契机

除了器件本身,“后摩尔”的另一潜力的来源是其专用性。P1qednc

传统的通用电路性能饱和,所以这两年“领域专用”的设计如火如荼。ISSCC自然也不能缺席。特别是在人工智能芯片领域。目前AI算法发展速度是每3.4个月算力翻倍,而摩尔定律最快也得1.5年单位面积上的尺寸翻倍。P1qednc

若要能稍稍赶上这一发展速度,就得联合算法寻找新的契机。P1qednc

P1qednc

在ISSCC的AI芯片Session中,几乎所有芯片设计都紧紧拥抱了算法,基于协同设计催化出更好的性能。P1qednc

例如,IBM提出的基于混合8位浮点的AI训练芯片。通过自定义FP8的数据格式,完成训练。精度上,和标准32位浮点的训练精度相差不超过1%,同时功耗又能保持在3TOPS/W以上,避免GPU百瓦级的耗电与发热。P1qednc

 P1qednc

P1qednc

 P1qednc

还有清华大学在ISSCC 2021报告的两篇存算一体SoC的论文。P1qednc

第一篇通过利用传统Cache一致性机制中的Set Associative技术,存算一体系统芯片中的再发明,完成了对稀疏输入的高效读写与计算,用更小的硬件代价完成更大规模的计算。P1qednc

P1qednc

第二篇通过利用In-tensor decomposition train算法将最占据存储空间的神经网络权重最大的三维卷积核 分解为多个小向量的乘积,通过仅存储这些小向量的方式,结合量化和稀疏性优化实现高性能片上存储空间。P1qednc

P1qednc

可见,上述方法的性能提升及其背后的新架构探索,都不适用于通用计算,但是通过算法与电路的更紧密结合,突破目前“摩尔时期”通用模块的性能瓶颈的效果显著。P1qednc

后摩尔集成:3D视角重新定义芯片与互联

摩尔定律的“初心”判断标准是单位面积上的晶体管数量的增长速度。P1qednc

在过去的很多年里,摩尔定律关心的都是二维平面上CMOS器件的尺寸微缩。但在后摩尔时代,如果二维的增长饱和了,为什么不考虑三维呢?ISSCC 2021上有多篇从3D视角切入的芯片可以提供讨论。P1qednc

首先是来自Sony的智能CIS传感芯片。由于人工智能应用的兴起,进传感器侧的AI芯片一直是CIS领域的热门话题。P1qednc

Sony通过三维封装与Cu-Cu互联,将一个CMOS图像传感器阵列与模拟前端、AI芯片集成在一个封装内。利用Cu-Cu互联高带宽避免了额外的传感器与处理器数据通信瓶颈。P1qednc

 P1qednc

此外,三维封装的另一个火热话题是Chiplet。虽然ISSCC 2021的论文中未有太多的Chiplet paper,但是在forum上,也披露了不少已发表的Chiplet高性能处理器的设计细节。P1qednc

比如AMD 二代EPYC架构服务器处理器芯片中基于Chiplet、无源连接基板和有源硅互联芯片的协同设计方法,阐述了其从芯片级到板级到系统级的考虑。P1qednc

P1qednc

还有Nvidia的Chiplet多AI加速器MCM集成芯片,进一步讨论了其互联与软件部署算法的系统设计考虑。这种场景下,芯片的设计视角需要跳脱单芯片的局部优化,而走向超大规模算力集成下的软硬件协同优化。P1qednc

有可能,我们即将来到一个3D封装重新定义单芯片的新格局。P1qednc

P1qednc

在这一背景下,大厂们也开始积极布局面向Die-to-Die的互联电路,Wireline session中Samsung、Cadence都有高性能片间互联的新电路设计。但目前为止,还是经典的Serdes的高能效设计,能否有颠覆性技术出现让我们拭目以待。P1qednc

P1qednc

其实还有很多ISSCC 的好paper难以穷举,你眼中的后摩尔技术还有什么呢?P1qednc

 P1qednc

(本文授权转载自公众号矽说,版权归矽说所有,转载请联系矽说)责编:胡安P1qednc

 P1qednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 英特尔展示下一代半导体器件技术,计划2030年实现万亿级 日前,英特尔在IEDM上展示多项与半导体制造技术相关的研究成果:3D封装技术的新进展,可将密度再提升10倍;超越RibbonFET,用于2D晶体管微缩的新材料,包括仅三个原子厚的超薄材料;能效和存储的新可能,以实现更高性能的计算;量子计算的新进展。此外,英特尔表示,目标是在2030年实现在单个封装中集成一万亿个晶体管。
  • 通过GaN电机系统提高机器人的效率和功率密度 机器人应用成功的关键因素之一是确保最佳的电机驱动器设计。
  • 湖南大学:基于2D的范德华异质结构,可用于晶体管及存储器 电子工程研究的一个关键目标是开发高性能和高能效的计算设备,这意味着它们可以快速计算信息,同时消耗很少的能量。一种可能的方法是将执行逻辑操作的单元和存储组件组合到一个设备中。
  • Microchip在RISC-V峰会上展示基于RISC-V的FPGA和空间 领先的PolarFire®器件可提供两倍能效、军用级安全和最高可靠性,PolarFire 2 FPGA路线图将进一步扩大其领先优势 
  • 聚焦“新基建”|汽车电子行业电源应用解析 目前,常规车型的汽车电子占整车成本的15-30%,而高端车型则更高,车载汽车电子系统主要包括车载供电系统、启动系统、发动机管理系统等。针对这些系统,金升阳提供一站式电源应用方案,简化客户设计,增加系统的可靠性。
  • IAR Systems更新Visual Studio Code扩展 用于代码构建和调试的IAR Visual Studio Code扩展备受市场喜爱,其最新 1.20 版进一步简化了嵌入式开发工作流程
  • SCT52240Q栅极驱动器 SCT52240Q是一款宽供电电压、双通道、高速、低测栅极驱动器,可驱动功率MOSFET,IGBT。单个通道能够提供高达4A拉电流和4A灌电流的轨到轨驱动能力,并实现轨到轨输出。高达24V宽电压范围提高功率器件开关瞬间栅极驱动的振铃幅值裕度。SCT52240输入具有宽迟滞电压,可以兼容TTL输入逻辑。 低至-5V负压输入能力,增强SCT51240对输入噪音的抗扰度。
  • Buck电路传导EMI的抑制 电磁干扰模型可以等效为3个部分:干扰源,传导路径,和接收端。传导电磁干扰测试时接受端为LISN。芯洲主要从干扰源和传导路径两个角度进行传导电磁干扰的预防和优化。
  • 异步Buck升级为同步Buck注意点总结 目前,市场上存在很多异步Buck电源管理芯片使用的场景,针对这些应用,采用同步Buck电源管理芯片进行升级,可以增加集成度,提升电源效率。然而在升级替换的过程中,需要注意PCB的布局。如果需要不更改PCB布局直接升级替换,需要在元器件选择上有所注意。本文首先对同步Buck,异步Buck进行介绍,给出同步Buck的PCB布局注意事项,然后结合实例给出替换中可以采取的保证电源正常工作的方法,供工程师参考。
  • 意法半导体发布车规音频功放芯片,为紧急救援、远程信 FDA803S和FDA903S是意法半导体FDA(纯数字放大器)系列中最新的单通道全差分10W D类音频功率放大器。目标应用包括紧急道路救援、远程信息处理等需要音频通道产生最高10W标准输出功率的语音、音乐或提示消息的任何汽车系统。
  • 在美国企业抵制之下,美国将放宽联邦机构及承包商使用中 这议案被视为美国《国防授权法案》(NDAA)的一项修正案,遭到美国商会和其他贸易组织的抵制。这些组织在上个月的一封信中称,企业要确定大量电子产品中的芯片是否是中国企业制造的,成本将很高,难度也很大。
  • 台积电1nm制程工艺已实现技术突破,正谋划建1nm工艺工厂 近日有报道称台积电正积极推进1nm制程工艺,并们已在谋划1nm制程工艺工厂的建设事宜,以便按计划量产。早前EDN美国版曾报道台积电1nm制程工艺已实现技术突破,且逐渐成形。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了