广告

第三代半导体热潮“带货”沉积设备需求,供应链与服务本地化成关键考量

2021-09-01 12:42:46 阅读:
如何选择薄膜沉积设备、使之匹配不断发展的宽禁带半导体制造工艺需求,是横亘在众多第三代半导体厂商面前的一道难题。

随着中国“十四五”规划的提出、以及全球科技产业对于“碳达峰、碳中和”的目标达成共识,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体新材料凭借高击穿电场、高热导率、高电子饱和速率以及抗强辐射能力等优异特性,成为了支撑5G基建、新能源产业、特高压、轨道交通等领域的核心技术。数据表明,2020年中国“第三代半导体”产业电力电子和射频电子总产值超过100亿元,同比增长69.5%。其中,SiC、GaN电力电子产值规模达44.7亿元, 同比增长54%;GaN微波射频产值达到60.8亿元,同比增长80.3%。ziqednc

ziqednc

12020年国第三代半导体产业电力电子和射频电子总产值ziqednc

不过,第三代半导体行业存在相当程度的准入门槛,由于SiC、GaN器件的性能与材料、结构设计和制造工艺之间紧密关联,多数半导体企业为了保持自身竞争力,倾向于采用IDM模式实现设计、制造的一体化。例如华润微建立了国内首条6英寸商用SiC晶圆生产线;英诺赛科也成功扩产位于苏州的GaN生产基地,使之成为全球最大的8英寸GaN工厂。显然,在全球半导体产能紧张的局势下,这些新开设或扩建的产线正在迅速拉升半导体设备的市场需求。以薄膜沉积这一必不可少的制造环节为例,在新产线的设备投资中,薄膜沉积设备占据了约25%的支出比重,是半导体设备市场增量中不可忽视的一环。因此,如何选择薄膜沉积设备、使之匹配不断发展的宽禁带半导体制造工艺需求,是横亘在众多第三代半导体厂商面前的一道难题。ziqednc

聚焦新工艺新材料40年沉积镀膜专家为第三代半导体支招

目前,业界主流的薄膜沉积工艺主要有原子层沉积(ALD)、物理式真空镀膜(PVD)和化学式真空镀膜(CVD)等,其中ALD属于CVD的一种,属于当下最先进的薄膜沉积技术。那么,哪一类沉积技术适用于第三代半导体呢?业界领先的ALD设备制造商和服务商——青岛四方思锐智能技术有限公司(以下简称思锐智能或SRII)总经理聂翔先生对此表示:“随着新材料、新工艺、新制程等应用于半导体制造领域,半导体器件本身也在往更复杂、更高深宽比,甚至是3D异形结构的方向发展,在超越摩尔领域、第三代半导体应用中更是如此。在这样的情况下,ALD相比其他镀膜技术拥有无可替代的优越性。”ziqednc

在实际应用中,思锐智能推出的新一代先进ALD设备可以使材料以单原子膜(0.1nm)形式沉积在基底表面,并且在整体器件的镀膜控制上达到很高的精确度。以GaN功率器件为例,通过思锐智能的ALD镀膜技术能够有效增强GaN器件的性能。首先,通过ALD薄膜可实现器件表面的钝化和覆盖;其次,通过氧化铝叠层实现栅极高K介电质的沉积;接下来,通过原位预处理去除自然氧化层,实现表面稳定;最后,通过高质量的ALD氮化铝来实现缓冲层,形成更具生产效益的量产方案。ziqednc

ziqednc

2思锐智能推出用于GaN功率器件的ALD镀膜方案ziqednc

依托思锐智能旗下BENEQ公司近40年的ALD技术应用经验,思锐智能正在为业界提供广泛、通用、性能强大的设备产品组合,专注ALD技术以及服务的持续创新能力,获得了欧美、日本、中国等全球范围内众多知名半导体企业的认可。ziqednc

产能扩张下的半导体设备机遇,技术服务与供应链本地化难题突显

产能扩张的普遍业态正在为设备厂商“签下大单”,设备提供商也需不断提升服务质量,进一步巩固自身的市场“护城河”。例如,思锐智能在2018年完成对BENEQ公司的全资收购之后,一直推行“本地化与全球化并行”的策略,除了巩固欧美市场的份额,也在扎根中国市场、培养本地国际化创新型团队,逐渐形成完善的覆盖研发、售前、售后等环节的服务网络,并加强部署与不同区域、不同领域、不同机构的产业生态合作。ziqednc

谈及本地化的机遇与挑战时,聂翔表示:“中国市场在不断涌现一大批半导体制造企业,思锐智能拥有贴近客户的优势,在发现客户对新工艺、新材料应用的需求之后,可以携手芬兰团队进行协同研发、共同创新。此外,不同客户在细节方面的要求也不尽相同,例如国内客户对交期更加敏感、服务响应速度要求更快等,这对本地化的技术服务能力提出了挑战。当然,为了交期更短、价格更具竞争优势,供应链的安全和高效整合是非常重要的因素。对此,思锐智能做了很多努力,积极推动供应链更加高效地运转、更加符合市场的需求!近期思锐智能官网sri-i.com和微信公众号“思锐智能SRII”全新上线,更好地帮助本地客户清晰、直观了解思锐智能的应用领域和产品方案。”ziqednc

除了技术团队、供应链等本地化举措,思锐智能也在推进不同领域的区域性合作,包括青岛、上海、浙江、粤港澳大湾区在内的众多产业集群区域已经纳入其布局规划中,通过产业化基地、联合实验室、中试线等方式,致力于实现更多本地化创新,持续为业界提供一流、创新的产品解决方案。ziqednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用GaN技术在狭窄的环境中保持“冷静” 虽然GaN器件可实现更高的功率密度,但为了实现高可靠性的适销对路的适配器设计,仍有一些系统级问题需要解决。这些问题以散热设计和EMI合规性为中心。适配器内的电子电路必须要在放置它们的狭小空间中保持冷(表现出低温升)静(低发射噪声)。本文将着眼于实现这些目标的技术。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 电动商用车的三种不同充电方案 随着重型或商用车辆的电气化,为比电动乘用车更大的电池充电变得必要。由于时间就是金钱,特别是在物流领域,分配空闲时间进行充电或增加充电功率是首选方案。这导致了三种不同的充电方案。
  • 成本不到一毛钱的塑料芯片,真的能量产吗? 现在研究人员设计了一种新的塑料处理器,他们估计能够以不到一便士(约合人民币0. 082元)的价格大规模生产。根据IEEE Spectrum 的一份报告,新的 Flexicore 芯片可以开启一个世界,从绷带到香蕉,一切都可以拥有芯片。
  • 一种具有触觉感应能力的仿生弹性机器人皮肤 科学家认为,给社交机器人安装类人体皮肤(或触觉传感器),可以实现安全、直观和接触丰富的人机交互。然而,现有的软触觉传感器存在一些缺点,如结构复杂、可扩展性差、易碎,这限制了它们在机器人全身皮肤上的应用。韩国科学技术高等研究院的一组研究人员与麻省理工学院的一位研究人员和斯图加特大学的另一位研究人员合作,开发了一种具有触觉感应能力的仿生弹性机器人皮肤。
  • 25kW SiC直流快充设计指南 (第八部分):散热管理 在本系列的前几篇文章中,我们介绍了基于onsemi丰富的SiC功率模块和其他功率器件开发的25kW EV快充系统。在这一章,我们来看看其中的散热管理部分是如何提高效率和可靠性,同时防止系统过早失效的。
  • EPC CEO Alex Lidow:“志存高远,勇往直前” Bill Collins是我在1977年研究生毕业后加入IR时的战略营销主管。他指导我完成了功率MOSFET及其第二代版本HEXFET的开发。Bill刚满90岁,我们仍然会每隔几个月吃一次午饭。
  • 25kW SiC直流快充设计指南 (第七部分):800V EV充电系 本篇将介绍25kW快充系统中的辅助电源设计。它基于onsemi针对800V母线电压的EV应用所做的一个辅助电源参考设计方案,即SECO-HVDCDC1362-40W-GEVB,它能提供15V/40W的持续输出供电。类似的方案还有SECO-HVDCDC1362-15W-GEVB,它能提供15V/15W的持续输出。
  • 25kW SiC直流快充设计指南(第六部分):用于电源模块的栅 本文的基础是使用安森美新型 SiC 模块构建 25 kW 快速电动汽车充电桩获得的经验。在此设计中,我们将使用安森美的 IGBT 电流隔离栅极驱动器作为起点,并介绍使用新的专用 SiC 电流隔离栅极驱动器进行的改进。本文介绍的所有栅极驱动器系列都采用相同的隔离技术和输出级技术。
  • 麻省理工开发利用人体自身糖分发电的超薄燃料电池 该装置比其他提议的葡萄糖燃料电池更小,厚度仅为 400 纳米,约为人类头发直径的 1/100。含糖电源每平方厘米产生约 43 微瓦的电力,在环境条件下实现了迄今为止任何葡萄糖燃料电池的最高功率密度。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了