广告

使用吉时利DMM的比率功能测量功率

2021-09-02 11:40:47 泰克科技技术大咖 Andrew Kirby 阅读:
技术大咖测试笔记系列之五。比率功能比较输入端子上的电压与传感端子上的电压,输出它们的商,也就是输入电压除以传感电压。由于这一测量编码两个单独的电压读数,因此使用TSP脚本会有一些事情很好玩。

在TSP脚本和低电阻电流传感电阻器的帮助下,我们实现了一个有趣的应用,即使用DMM6500这样的数字万用表,通过比率功能测量功率。脚本基于的原理是,比率功能在一个读数中同时存储传感和输入电压的电压测量数据,然后显示输入电压与传感电压的比值。asSednc

比率功能比较输入端子上的电压与传感端子上的电压,输出它们的商,也就是输入电压除以传感电压。由于这一测量编码两个单独的电压读数,因此使用TSP脚本会有一些事情很好玩。asSednc

例如,在下面的应用中,比率功能在传感端子之间放一个外部低电阻并联电阻器,来测量功率。这意味着您可以使用传感端子和输入上的电压,来测量电流。有了这两个值,您可以计算给定电路任意一段的能耗。asSednc

asSednc

但在此之前,您首先要解码比率测量,提取电压和电流读数。传感端子上的电压存储在“Full”样式缓冲器的“Extra Value”字段中,这个缓冲器用来存储读数(在这种情况下称为readingBuffer)。然后要把比率读数乘对应的传感电压读数,得出输入端子上的电压。asSednc

存储了两个电压后,可以把传感电压测量值除以并联电阻器值,得出电流。最后,获得给定时点上的电流和电压后,两者相乘,积就是能耗。功率读数可以输出到有源可写入缓冲器(powerBuffer)中,显示在屏幕上。这看上去似乎有点复杂,实际上只需要几行代码就能搞定,如下图所示:asSednc

asSednc

这个脚本适用于支持TSP的任何吉时利DMM。如需了解泰克和吉时利全部数字万用表,包括最新DMM6500,敬请访问https://www.tek.com/digital-multimeterasSednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 儿童电子学(一):LED 电子是当今的热门话题,许多孩子们也期望了解并掌握这个重要技术的基本原理。本文是一个面向孩子们的基础电子课程,将并以简单有趣的方式教他们基础知识,激发他们的兴趣。
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 为什么步进电机的微步没有想象的那么好? 在使用步进电机设计运动控制系统时,不能假设电机的额定保持转矩在微步时仍然适用,因为增量转矩会大大降低。这可能会导致意外的定位误差。在某些情况下,增加微步分辨率并不能提高系统精度。
  • 适用于CSP GaN FET的简单高性能散热管理解决方案 本文将演示芯片级封装(CSP) GaN FET提供的散热性能为什么至少能与硅MOSFET相当,甚至更胜一筹。GaN FET由于其卓越的电气性能,尺寸可以减小,从而能在不违背温度限制的同时提高功率密度。本文还将通过PCB布局的详细3D有限元仿真对这种行为进行展示,同时还会提供实验验证,对分析提供支持。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了