广告

学子专区—ADALM2000实验:跨阻放大器输入级

2022-02-28 20:41:32 ADI公司 阅读:
本次实验旨在研究简单跨阻放大器的输入级配置。

目标

本次实验旨在研究简单跨阻放大器的输入级配置。3hRednc

背景信息

跨阻放大器输出的电压与输入电流成比例。跨阻放大器通常被称为互阻放大器,尤其是半导体制造商喜欢这样叫。在网络分析中,跨阻放大器的一般描述是电流控制的电压源(CCVS)。3hRednc

反相跨阻放大器可由传统运算放大器和单个电阻器构成。电阻器连接在运算放大器的输出和反相输入之间,同相输入连接到地。这样,输出电压便与反相输入节点处的输入电流成比例,随着输入电流的增加而减小,反之亦然。3hRednc

本次实验活动探究一种交替差分输入结构,它能够产生固有的低输入阻抗(电流输入),而在ADI公司 6月学子专区实验和 7月学子专区实验(MOS)中探究的电压差分对则与此相反,其输入阻抗相对较高。完整的转换放大器可能需要添加更多增益级和一个输出驱动器级。3hRednc

材料

  • ADALM2000 主动学习模块
  • 无焊面包板
  • 跳线
  • 三个1 kΩ电阻
  • 两个2.2 kΩ电阻
  • 一个47 kΩ电阻
  • 两个10μF电容
  • 两个NPN晶体管(2N3904或SSM2212)
  • 两个PNP晶体管(2N3906或SSM2220)

说明

与ADALM2000(ADI公司)相连的电路及连接如图1所示。NPN晶体管Q1和Q2以及PNP晶体管Q3和Q4应从VBE匹配最佳的可用器件中选择。在同一封装中制造的晶体管,例如SSM2212、SM2220或CA3046,往往比单个器件匹配得更好。探究本电路的工作原理时,示波器输入1+可以连接到Q1和Q3发射极的连接点,或连接到Q1或Q3的集电极。位于Q1和Q3的发射极连接点的电流输入节点是标称低阻抗,因此它可以从电流源驱动。ADALM2000的AWG输出更像电压源。因此,1 kΩ电阻RIN用于将AWG1的电压输出转换为电流(IIN = VIN/1 kΩ)。3hRednc

3hRednc

1.电流驱动的跨阻放大器输入级3hRednc

3hRednc

2.面包板电路上的电流驱动跨阻放大器输入级3hRednc

硬件设置

第一个波形发生器W1配置为1 kHz正弦波,峰峰值幅度为800 mV,偏移为0。示波器的通道1应连接为显示第一发生器的输出,通道2应设置为显示输出信号(每格40 mV)。3hRednc

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用LTspice®的波形示例如图3所示。3hRednc

3hRednc

3.电流驱动的跨阻放大器输入级的波形3hRednc

观测RL的输出,其为Q1和Q3的集电极信号交流耦合的和。测量从AWG1输出到RL的电压增益,并将其与计算值进行比较。观测电流输入节点(1+,Q1和Q3的发射极在此连接)处的信号的电压幅度。基于该幅度计算放大器的输入电流幅度(RIN两端的电压除以RIN)和有效输入电阻。将这些值与计算值进行比较。3hRednc

配置电压驱动

附加材料

  • 一个470 Ω电阻

说明

现在将输入重新配置为电压驱动。用470 Ω电阻替换RIN,另一端接地,如图4所示。断开Q2和Q4的发射极与地的连接,并断开其与AWG1输出的连接。3hRednc

3hRednc

4.带尾电流源的差分对3hRednc

硬件设置

第一个波形发生器W1配置为1 kHz正弦波,峰峰值幅度为800 mV,偏移为0。示波器的通道1应连接为显示第一发生器的输出,通道2应设置为显示输出信号(每格80 mV)。3hRednc

3hRednc

5.面包板电路上的电压驱动跨阻放大器输入级3hRednc

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用LTspice的波形示例如图6所示。3hRednc

3hRednc

6.电压驱动的跨阻放大器输入级的波形3hRednc

观测RL的输出,其为Q1和Q3的集电极信号交流耦合的和。测量从AWG1输出到RL的电压增益,并将其与计算值进行比较。观测电流输入节点(1+,Q1和Q3的发射极在此连接)处的信号的电压幅度。基于该幅度计算放大器的输入电流幅度(RIN两端的电压除以RIN)和有效输入电阻。将这些值与计算值进行比较。3hRednc

在该电压驱动配置中,为了测量输入驱动器(W1)需要提供的电流,应插入1 kΩ电阻与AWG1(以及Q2和Q4的发射器)串联。横跨1 kΩ电阻连接差分通道1示波器输入1+、1-。当AWG1以±400 mV摆幅摆动时,观测此电压并计算电流。3hRednc

问题:

  • 说出定义跨阻放大器的主要特性。
  • 您能否指出采用此类电路的一些应用?您可以在学子专区 论坛上找到答案。

作者简介

Doug Mercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。联系方式:doug.mercer@analog.com3hRednc

Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工程学士学位。联系方式:antoniu.miclaus@analog.com3hRednc

原文标题:StudentZone— ADALM2000 Activity: The Transresistance Amplifier Input Stage3hRednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现实用且有效的数字预失真解决方案 根据许多推广材料对数字预失真(DPD)的介绍,其性能是基于静态定量数据。通常,这些材料会显示DPD频谱并引用邻道泄漏比(ACLR)数字。这种方法虽然解决了基本需求,但却没有抓住实际部署中出现的诸多挑战、风险和性能权衡。向5G的快速过渡带来了大量新的挑战和场景,算法开发人员和设备供应商需要给予更多关注。要支撑静态性能,必须具备在有许多元素处于变化状态的复杂环境中保持性能和稳定性的能力。
  • 一种使用连续时间Σ-Δ型转换器优化信号链的新型方法 为何应考虑使用CTSD ADC来改善我的信号链设计?相比传统架构,CTSD拓扑能够优化信号链。
  • 将天线嵌入蜂窝物联网设计 只要遵循简单的设计准则,便可以使用单个小型天线来服务蜂窝物联网产品中的多个无线电
  • 用于实现O-RAN无线解决方案的5G技术器件 O-RAN旨在推动无线社区转型、开辟新无线设备通道和推动创新,以履行3GPP关于5G的承诺。要取得成功并保持高性价比,必须提供开源的无线电设备和优化的5G技术器件。本文将介绍其中一种用于设计和构建节能解决方案的解决方案。
  • 学子专区——ADALM2000实验:放大器输出级 本次实验旨在研究简单推挽放大器的输出级(B类和AB类)。
  • 同时利用PIC两种外设输出的电路 在PIC微控制器中,MSSP(主同步串行端口)模块是利用多路复用引脚来应对I2C和SPI两种外设。使用这两个外设中的任何一个通常都没有问题。但是,如果要同时使用这两种外设而不改变微控制器该怎么办呢?
  • 如何通过滤波消除模数转换中的噪声 机械过滤器很容易在暖通空调系统和饮水机中以及汽车引擎盖下找到。几个月后更换空气过滤器,才发现有多少杂质漂浮在周围直到堵塞而未被注意到。这就提出了一个问题:电子信号会变脏吗?噪声来自模拟电路,因此也就是将信号处理转到数字的重要原因。
  • 一文掌握数模转换器动态性能的那些主要规格 对DAC可能最重要的动态指标是噪声、毛刺脉冲、失真和无杂波动态范围(SFDR)等等。本文将以数据转换器行业全球领导半导体厂商亚德诺半导体(ADI)的相关代表产品为基础,重点阐述如何提高精密DAC价值的主要动态性能规格,以及介绍精密DAC输出端噪声的性质和来源,同时说明一些动态性能规格,这些规格在某些应用中可能非常关键。
  • 用于状态监控的高保真振动采集平台 本章内容阐述了MEMS技术的最新进展如何将加速度传感器推到前沿,并且将可以确保将最高质量的振动数据传输至机器学习环境CbM开发平台支持的机器学习流程进行了简单的概述。
  • 对温度变化不敏感的AB类20W电流增强器 本设计实例中所开发这个电路是为了解决我在AB类功率放大器设计中所遇到的一些缺点,同时保留了其所有优点。它将此前某2W音频放大器设计的功率水平推向了新的极限。
  • 英飞凌推出MERUS D类音频放大器多芯片模块,兼具体积小 D类音频功放兼具体积小、发热少、集成度高和高清音质等优势。
  • 自耦变压器和风扇 由于我的SPICE版本中并不包括自耦变压器,因此必须设计一个使用两个1:1匝数比变压器的模型...
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了