广告

线性光耦及其回路增益“陷阱”

2022-09-22 10:10:31 John Dunn 阅读:
我正在检查的电源在其反馈通路中使用光耦来控制其输出电压。这是一种常见、成熟的设计方法,但反馈回路的无条件回路稳定性并不完全确定。

我正在检查的电源在其反馈通路中使用光耦来控制其输出电压。这是一种常见、成熟的设计方法,但反馈回路的无条件回路稳定性并不完全确定。Wotednc

我决定以两种方式测量光耦的传递函数,如下所示。我知道该器件的数据手册提供了这种特性,但我想亲自了解一下(1)。Wotednc

Wotednc

图1:光耦传递函数测试设置。Wotednc

恰好我手边有1.33kΩ和150Ω两个电阻,为了方便,我使用了它们。一对1kΩ和100Ω电阻也就足够了,但那一刻我只是不想翻找。Wotednc

这两个测试结果似乎确实证实了数据手册的介绍(2)。Wotednc

Wotednc

图2:光耦传递函数测试结果。Wotednc

2的上部和下部迹线分别与图1的上部和下部草图相配。注意到这两个测试结果具有对称性令人欣慰。然而,经过一些心理反思,我意识到有一个回路增益陷阱需要注意。Wotednc

使用2的下部迹线,测量传递函数斜率,可以看到以下内容(图3):Wotednc

Wotednc

图3:传递函数的特写检查。Wotednc

图中文字:Wotednc

左侧部分的斜率为148.8%。Wotednc

上侧部分的斜率为17.0%。Wotednc

这两个斜率以dB表示的比率为20*log10(148.8/17.0)=18.8dB。Wotednc

如果将此光耦在反馈通路中以线性模式使用,则小信号回路增益可能会变化大约19dB,具体取决于该器件静态工作点(Q点)的设置位置。Wotednc

光耦的“线性”特性不能太从字面上去理解。该器件的传递函数不会发生改变或类似情况,但输出对输入的一阶导数,即输出对输入的斜率,会随着设置器件静态工作点的位置而变化。我所检查的器件的可变性接近19dB。Wotednc

如此大的增益变化可能会对反馈回路的整体传递函数产生“跺脚”(rompin'-stompin')效应,从而可能会将边缘稳定的反馈回路推入条件不稳定状态。Wotednc

所有这一切的注意事项是,确保检查为自己选择的任何光耦的真实斜率,以及选择将其静态工作点设置的位置。Wotednc

(原文刊登于EDN美国版,参考链接:Linear opto-couplers and the loop gain 'booby trap',由Franklin Zhao编译。)Wotednc

责编:Franklin
本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
John Dunn
John Dunn是资深电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 噪声抑制与有源降噪:有何不同之处? 噪声抑制和有源降噪,这两项功能近来在音频产品中很常见,但它们不只是流行词而已。这两项技术有助于以不同的重要方式减轻噪声的影响。本文将解释二者的区别,同时更深入地探讨其中的噪声抑制技术。
  • 拆解电池供电的微型立体声功放(附原理图) 本文将对另一款神秘小设备进行拆解,那就是由四节AA电池供电的最简单的迷你立体声放大器。我之所以对它感兴趣,是因为一开始我甚至不知道这个小设备是什么,但打开外壳后,一切就豁然开朗了。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • USB供电的5.8GHz RF LNA接收器,带输出功率保护功能 图1所示的电路来自高性能RF接收器系统,具有+23dB增益,优化之后,支持采用5.8GHz中心频率。其输入未经滤波,保持2dB噪声系数,但输出端配有带通滤波器,会衰减带外干扰。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
  • 采用晶振控制的斜坡发生器 本项目源于需要为HP 8620C射频扫频振荡器产生线性晶体控制斜坡信号。它的灵感来自之前发布的斜坡发生器设计。这种设计存在两个问题:它使用了非标准的16.384MHz晶体振荡器;其斜坡的下降/返回/消隐时间为零。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 给变压器烙铁DIY一个温度“稳定器” 多年来,我一直对变压器烙铁头的没有温度控制而感到恼火。可能所有使用变压器烙铁的用户都注意到,使用这种烙铁进行焊接需要大量练习,以免因温度过高而造成损失。问题在于无法控制烙铁头温度,我决定稍微DIY一下。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了