广告

混合超级电容器有何优点和缺点?

2021-09-09 11:38:46 Bill Schweber 阅读:
混合超级电容器并不是简单地将一个可充电电池和一个超级电容器打包在一起。相反,它采用了一种独特的结构,其中的单个组件既是一个超级电容器又是一个锂离子电池。

双电层电容器(EDLC)通常被称为“超级电容器(supercapacitor或ultracapacitor)”,是一种能量惊人的无源储能元件。由于其电容高达几法拉,而且尺寸小,因此无论是对于体积还是重量,都实现了高密度的能量存储。在远距离感应、物联网和通过能量采集供电的应用中,超级电容器被用来替代可充电电池;有时候超级电容器可以与电池结合使用,以克服电化学储能元件的一些弱点。超级电容器并不是天生就优于其他电池,它和可充电电池(无论化学性质如何)各有其优势和劣势。采用哪种元件更适合是根据应用的需要来决定的,在某些应用中可能两者都需要。DRbednc

相比这种只选择一种器件甚或两种器件作为两个分立组件的方法,还有一种有趣的替代方案,称为混合超级电容器。这种储能器件并不是简单地将一个可充电电池和一个超级电容器打包在一起。相反,它采用了一种独特的结构,其中的单个组件既是一个超级电容器又是一个锂离子电池,如图1所示。DRbednc

DRbednc

图1:从混合超级电容器结构的顶层视图来看,它并不是一个超级电容器和一个电池共享一个2端子封装。(图片来源:Taiyo Yuden)DRbednc

混合超级电容器的供应商目前有Taiyo Yuden(该公司称其产品为锂离子超级电容器,明确指出了所采用的技术)、Eaton和Maxwell(被特斯拉收购)。DRbednc

表1对标准的超级电容器和锂离子充电电池进行了比较。这类表格有很多,但请记住,每个资料来源和供应商都有各自不同的角度,而且技术本身也在快速发展。DRbednc

DRbednc

表1:超级电容器与锂离子充电电池主要特性之比较。信息来源和时间不同,每种特性的数据也可能不同。(图片来源:Maxwell公司)DRbednc

尽管混合超级电容器优势明显,但我对混合器件和结构的感情总是很复杂。一方面,将两种技术或材料相结合,往往能克服一些弱点同时仍保留各自的优点。这不仅适用于电子领域,也适用于其它领域,例如用钢筋加固的混凝土,或用作最新一代飞机机身及附件外层的碳纤维增强聚合物(CFRP)。DRbednc

另一方面,这种组合有时也会带来新的问题。例如,与针对单一用途进行优化的设备,多功能测试设备的规格可能会降低,或者灵活性减小。一个非电子产品的例子是广为人知的“瑞士军刀”,每个单独的工具可能都“够好”,但又绝对比不上专用工具,然而其整个刀片/附件及包装在尺寸、重量和成本方面都具备优势。DRbednc

混合超级电容器还存在管理的难题。锂离子充电电池在监控充电和放电率、库仑计数、温度(这里仅引用几个参数)等方面有其特定的要求,而超级电容器对类似参数也有自己的特定要求。那么,如何管理混合超级电容器?管理策略是否会发生冲突?也许这两者足够相似,因而可以采用一种方法来管理这种2端子混合器件?DRbednc

此时我想到了隧穿二极管:尽管它具有一些非常吸引人的性能特征,但这个2端子器件没有明显的输入-输出-接地连接,实际用起来相当困难,因此并不受欢迎;PIN二极管也是如此,只需看看它的一些应用电路原理图就知道。美信最近推出的MAX38889是一款2.5V至5.5V、3A可逆降压/升压稳压器,专门针对超级电容器备份应用进行了优化,这类IC是否可以很好地管理两种器件呢?(图2)DRbednc

DRbednc

图 2:MAX38889专用于实现超级电容器的管理,电路中可能有电池。(图片来源:Maxim Integrated Products)DRbednc

在碰到难题时是否需要采用混合超级电容器解决方案,通常难以权衡。混合超级电容器的一个构成部分可以弥补另一个构成部分的一个或多个短处,这固然是一个很明显的优势,但在许多情况下也会出现新的缺点。DRbednc

那么,采用混合超级电容器是否有用?答案很简单:视情况而定。在某些情况下,因采用混合超级电容器而产生的缺点在应用中是不可接受的;而在另一些情况下,可能好处大于坏处。定量地说,就是模型不仅要解决“1+1<、=或>2”的问题,还必须评估解决方案造成的任何问题。DRbednc

除了混合超级电容器,对于其它混合(组合或合并)解决方案,你是否有经验可以分享?整体好处是否比带来的任何不利影响更重要?你如何在混合方案的优缺点之间进行平衡呢?欢迎与我们分享。DRbednc

(原文刊登于EDN姐妹网站EETimes美国版,参考链接:Looking at Hybrid Supercapacitors,由Jenny Liao编译。)DRbednc

本文为《电子技术设计》2021年9月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里DRbednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 哪能买,买一个玩玩
  • 终于开始“融合”了。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了