广告

在3.3V MCU板上对两种低压电源进行简单廉价的线或处理

2021-01-11 12:41:04 Benabadji Mohammed Salim 阅读:
当今大多数微控制器(MCU)都采用3.3V或更低的直流电压供电。对于永久使用的情况,设计中通常包括电池和主电源两种电源,并使用线或二极管将它们连接在一起。对早期的设计(通常采用9V或更高的电池电源供电)而言,二极管正向压降(0.6V)不会有什么问题。但是在最新的电路中,即使选择肖特基二极管(0.3V),也不推荐使用这种解决方案。

当今大多数微控制器(MCU)都采用3.3V或更低的直流电压供电。间歇性使用的低功耗嵌入式系统涉及到电池。对于永久使用的情况,设计还通常包括一个主电源(带有变压器和AC/DC电路),并使用线或二极管将两种电源连接在一起(参考文献1和2)。对早期的设计(通常采用9V或更高的电池电源供电)而言,众所周知的二极管正向压降(0.6V)不会有什么问题。但是在最新的电路中,即使选择肖特基二极管(0.3V),也不推荐使用这种解决方案。aEkednc

更好的选择是使用专用的IC控制器来对电池电源和市电电源进行组合。诸如LT4351(参考文献3)之类的器件,由于镇流器MOSFET晶体管的Rdson非常低,因此所产生的正向压降仅为数十毫伏(mV)。但是,与下面简单的分立式解决方案相比,这类专用IC通常很昂贵,而且很难找到。aEkednc

当我在设计需要长期使用的超低功耗便携式数据记录仪而想要提高其整体效率时,1中的电路就至关重要。aEkednc

aEkednc

图1:对于电源的线或应用,这种简化的分立式电路与二极管的方法相比可提高效率。aEkednc

下面进行简要说明。如果存在主电源(Vin1),则N沟道MOSFET晶体管T3就会导通,进而会将P沟道MOSFET T2的栅极下拉而使T2导通。晶体管T1所看到的栅源电压(Vgs)是T2的漏源电压(Vds),该电压仅为数十mV。因此,T1关闭,外部电源通路(Vin2)处于开路状态。aEkednc

现在,在间歇性Vin1断电的情况下,T3由于其栅极通过R1下拉而断开,并且T1导通。晶体管T2由于其栅极通过R2上拉而截止(T2的Vgs几乎为零)。aEkednc

MOSFET T1和T2应选择低电平栅极类型并具有超低导通电阻特性(例如:T1 = T2 = PMN50XP[参考文献4],其在Vgs =3.3V时Rdson为60mΩ)。晶体管T3可以采用流行的2N7000(或表贴器件2N7002)。aEkednc

存在主电源时,电路的静态电流约为20μA,否则近乎为零。因此,电池适合作为外部电源。aEkednc

R1和R2的值并不重要。如果希望获得非常低的静态电流,则可以将它们选为数百kΩ;如果希望减少输入电源之间的换向时间,则可以将它们选为数十kΩ。aEkednc

Benabadji Mohammed Salim在阿尔及利亚奥兰科技大学攻读计算机科学硕士学位。aEkednc

参考文献

  1. Fundamentals of power system ORing, Martin Patoka, EDN, March 21, 2007
  2. Use op amps to make automatic-ORing power selector, Bob Zwicker, EDN, August 11, 2011
  3. LT4351 MOSFET Diode-OR Controller, Linear Technology Corporation
  4. PMN50XP P-channel TrenchMOS extremely low-level FET, NXP Semiconductors, 2007

(本文授权编译自EDN美国版,原文参考链接:ORing low-voltage sources simply and cheaply on 3.3V microcontroller boards,由赵明灿编译)aEkednc

本文为《电子技术设计》2021年1月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里aEkednc

(责编:赵明灿)aEkednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 挺好的
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了