广告

利用可扩展电流负载提供恒定电阻模式

2021-02-24 09:43:39 Konstantin Stefanov 阅读:
本文所介绍的电流负载设计简单而又准确,它只需要使用一个运算放大器和一个功率MOSFET就可以构建。还可以将这个电流负载设置成恒定电阻,这在测试某些电源时就非常有用。

对电源和电池进行测试,需要使用能够吸收大电流并能消耗大量功率的电流负载。本文所介绍的这种电流负载设计简单而又准确,它只需要使用一个运算放大器和一个功率MOSFET就可以构建,如图1所示。V2Mednc

V2Mednc

图1:这种电流负载非常简单,并联多个MOSFET可以实现更大的电流和功耗。V2Mednc

流过Q1的电流可以通过下式求得:V2Mednc

V2Mednc

这个电流可以通过改变参考电压(VREF)轻松实现控制。运算放大器应具有低输入失调电压,并能采用单电源供电。V2Mednc

如果要使电路能够吸收大电流或消耗数十瓦的功率,则可以使用一个运算放大器来对多个并联工作的MOSFET进行控制。但是,简单地并联MOSFET会产生两个不良影响。一方面,不同的晶体管,即使它们的型号相同,其导通阈值通常也有所不同,并且它们的阈值具有负温度系数。也就是说,首先,每个晶体管的漏极电流之间可能存在很大的差异,一旦晶体管发热,其阈值就会降低,这又会进一步使电流增大而使之变得更热。V2Mednc

为了使晶体管电流均衡,可以对每个晶体管的源极增加一个串联的小电阻器。为了使其有效,必须使源极电阻两端的电压降与阈值相当,这就会占用1V的很大一部分。这样,均衡电阻就会消耗很大功率,其两端的压降也就会占用电路可工作的最小电压。V2Mednc

一种建立大电流、高功率负载的更好的方法是对每个MOSFET进行分别控制,这样就能避免由于阈值散布而引起的电流不平衡。图2所示的电路包含两个这样的电路块,但也可以按需添加更多。在跳线J1闭合、J2断开的情况下,电路以恒流模式工作,总负载电流由下式给出:V2Mednc

V2Mednc

如果检测电阻的数值相等(R2=R5=RS),则总负载电流可以简化为:V2Mednc

V2Mednc

图2:这种电流负载原理图使用了两个独立控制的MOSFET。V2Mednc

要测量总负载电流,就需要对每个晶体管的电流进行求和,在本例中可以通过对所有检测电阻器的压降进行求和来实现。通常,这是由一个反相加法器后接一个反相器完成的,也即使用两个运算放大器来搭建。缺点是由于加法器输出端会发生电压反转,因此这两个运放需要使用双极性电源供电。V2Mednc

本设计实例使用了一种更简单的方法来对电压降进行求和,那就是使用电阻R7和R8以及仅一个运算放大器。这种加法的原理如图3所示。N个电阻器中的每一个均由一个具有非常低阻抗的电压源驱动,也即本例中在检测电阻器两端施加压降时所得到的结果。V2Mednc

V2Mednc

图3:这张图说明了在VOUT处所实现的电压求和。V2Mednc

如果VOUT端子没有电流流出,则根据基尔霍夫定律可得:V2Mednc

因此:V2Mednc

V2Mednc

在有两个检测电阻器的情况下,如图2所示,U2A的同相输入端的电压是R2和R5两端压降之和的一半。在经过2倍增益的U2A后,输出电压IMON就是两个检测电阻器电压的总和,用它就可以监视总负载电流的大小。通过并联添加更多的基本模块,就可以对电路进行扩展,然后针对模块数量使用式3和式5,就可以计算出总负载电流,以及U2A放大之前的检测电流输出。为方便起见,对于三个电源块的情况,可以使用一个四运算放大器。V2Mednc

最后,可以将这个电流负载设置成恒定电阻,这在测试某些电源时就非常有用。其实现方法是提供一部分负载电压VL作为参考电压。将跳线J2闭合(J1断开),U1A和U1B的同相输入端的电压就由VL和由R9和R10形成的分压器所决定,因此负载电流变为:V2Mednc

V2Mednc

据此可知有效负载电阻RL为:V2Mednc

V2Mednc

通过调节分压比或用电位计代替R10,就可以将负载电阻从由式7计算得到的标称值(对于图2中的值为2.55Ω)变为R10=0时的接近无穷大。V2Mednc

Konstantin Stefanov是英国开放大学电子成像中心的高级研究员(Senior Research Fellow)。V2Mednc

(本文授权编译自EDN美国版,原文参考链接:Scalable current load offers constant resistance mode,由赵明灿编译)V2Mednc

本文为《电子技术设计》2021年2月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里V2Mednc

(责编:赵明灿)V2Mednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现最精确的授时和同步? 在为关键基础设施制定PNT解决方案时,运营商必须做出两个最关键的决策:1) 是否应在架构的每一层上部署弹性、冗余和安全性?2) 应采用哪种安全策略?
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 金升阳汽车电子一站式电源解决方案 金升阳汽车电子一站式电源解决方案
  • 满足车规级、医规级的芯片级DC/DC电源——B0505ST16-W 金升阳推出芯片级隔离电源产品B0505ST16-W5,为高端芯片应用助力。金升阳芯片级电源B0505ST16-W5采用新一代自主研发技术,电路技术和电气性能都有质的提高,在汽车电子等领域,朝着小型化、功能集成化的方向迈进。
  • 实现测试测量突破性创新,采用ASIC还是FPGA? 作为世界创新的幕后英雄,特别是在电子器件和通信技术方面,工程师们要开发测试设备,验证这些新技术,以把新技术推向市场。这些工程师必须运行尖端技术,处理预测行业和创新未来的挑战。在开创未来的过程中,测试测量工程师面临的基础性创新挑战之一,是确定设计中采用专用集成电路(ASIC)还是现场可编程门阵列(FPGA)。
  • 大联大品佳集团推出基于Infineon iMotion产品的冰箱 大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)IMC101T的冰箱压缩机方案。
  • 低功耗“刚需”加速物联网应用落地,用独特MCU设计的省 低功耗MCU涉及的关键技术和设计挑战非常多,从如何定义系统架构、构建平台和MCU生态系统到数字电路设计,从工艺的选择到模拟电路设计,从可靠性设计到低功耗设计,从应用创新到满足客户各种需求等,每方面都对设计公司提出很高要求……
  • 无线充解决方案 SCT6324X系列是一款高度集成的电源管理IC,能够实现符合WPC规范的无线电源发射器系统的高性能、高效率和成本效益,以支持高达20W的功率传输,适用特定于无线应用程序的控制器或基于通用MCU的发射器控制器。
  • 谈谈智能舱座应用 智能舱座的出现体现了人们对于智能汽车的向往,注重车内感知系统和交互模式,那么随着车内感知系统和交互模式的升级,对车规级芯片的需求与要求日益增长。
  • 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品生态
  • 芯海科技宣传片 芯海科技宣传片
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了