广告

AI大拿们都在讨论哪些先进技术?

2019-02-18 Junko Yoshida 阅读:
大多数关于AI语音产品的报导从去年开始,当时笔者和EDN主编Brian Santo在CES展览上看到的AI产品令人感到无趣。但IBM在去年底举行了首次人AI会议,IBM研究人员的报告让我们知道该领域的知名人士,和研究人员正在着手解决的AI相关问题。

IBM在去年底举行了首次人工智能(AI)会议,IBM研究人员的报告让我们知道该领域的知名人士,和研究人员正在着手解决的AI相关问题。qA0ednc

消费性电子展(CES)刚结束,让我们把注意力从那些吸引人的小玩意儿转移到AI技术。qA0ednc

我和我的搭档EDN主编Brian Santo一起前往拉斯韦加斯之前,我们俩都非常期待听到许多关于AI的话题,并在CES上看到许多具有AI功能的产品。qA0ednc

令人惊讶的是,我们感受到的AI热潮比我们想象得少。大部分是我们已经知道的产品,像是AI语音产品,例如智能音箱、智能玩具,和AI相关的计算机视觉应用,例如自驾车。qA0ednc

显然,AI最初推广的商业市场,专注于方便、易于使用(语音)的消费性产品。qA0ednc

因此,亚马逊(Amazon)、Google和微软(Microsoft)支持的语音AI产品到处可见,可作为消费性电子厂商的产品噱头,例如,高通(Qualcomm)的展示车驾驶座就搭载了亚马逊Alexa功能。qA0ednc

大多数关于AI语音产品的报导从去年开始,当时我们在CES展览上看到的AI产品令人感到无趣。qA0ednc

作为一名产业的记者,我对AI的无知让我感到谦卑,有这么多东西需要学习。在我的2019年议程中,我列出了我想了解的是产业在“广义AI”的走向、了解物联网整合“分布式(distributed)AI和机器学习应用”、了解“生物启发芯片设计(bio-inspired chip designs) ”发展到哪里,以及它们与AI之间的关系。我还考虑了AI的可解释性、安全性和公平性。qA0ednc

显然,开始的地方不是CES。(我在想什么?)AI仍然被困在研发部门和学术界的围墙后面,尽管现在已经开始慢慢进入公众领域。qA0ednc

幸运的是,IBM研究部门的Rajiv Joshi联络我,他去年秋天在IBM T.J. Watson研究中心举办了AI运算研讨会(AI Compute Symposium)。他告诉我第一次AI研讨会是如何与IEEE电路与系统协会(IEEE Circuits and Systems Society)和IEEE电子设备协会(the IEEE Electron Device Society)密切合作。qA0ednc

我请Joshi为我进行AI研讨会简要介绍(因为我不在会场),他提出了一份易于理解的现场报告。虽然这场会议在两个多月前举行,但Joshi的报告(阅读下文全文)提供了AI研究领域中正在发展的全貌。这是一个很好的工具,可以找出这个领域的参与者,且研究人员正在推动解决AI问题。qA0ednc

Joshi提到,下一次在今年10月中举行的AI研讨会将会更精彩。所有专业人士、教授和学生皆可免费参加。去年秋天举办的第一次AI研讨会仅限约160人参加。qA0ednc

Joshi是关键技术负责人、主要发明者和IBM技术学院的成员。Joshi在AI研讨会上的其他负责人包括联想的HPC和AI战略和架构师Matt Ziegler,以及IBM T.J. Watson 研究中心的经理和研究员Arvind Kumar。Ziegler与Kumar担任会议主席,研讨会的另一位科学家是加泰隆尼亚理工大学(UPC Barcelona Tech)教授Eduard Alarcon,她是新兴及精选电路与系统期刊(IEEE Journal on Emerging and Selected Topics in Circuits and Systems;JETCAS)的主编。qA0ednc

如果你正在寻找第一场AI研讨会上的演讲记录,2019年6~7月将会出版一本刊载演讲内容与投影片的书(由IEEE CAS赞助)。Joshi提到,部分文件很可能会在今年稍晚发表在IEEE JETCAS 杂志上,同时,座谈会的影片将于今年4月在IEEE电视台播放。qA0ednc

以下是Joshi在第一次AI研讨会上所做的报导:

IBM Research、IEEE电路和系统协会(CAS)和IEEE电子设备协会(EDS)于2018年10月25日在纽约约克镇高地的IBM T. J. Watson研究中心THINKLab实验室共同举办了第一次AI运算研讨会。这次活动邀集了来自业界和学术界的梦想家、思想家和创新者,共同举办了为期一天的研讨会,主题在讨论解决AI运算挑战和AI未来方向的先进技术研究。研讨会包括两场专题演讲、六场特邀讲座、一场学生专题研究海报展和一场小组讨论。这次活动是免费的,有来自IBM、各公司和大学的155名出席者参加。IBM和IEEE在当时的确展示了他们在AI运算领域的先进专业知识。qA0ednc

AI.jpgqA0ednc

委员们和特邀演讲嘉宾,由左到右,包含Xin Zhang (IBM)、Krishnan Kailas (IBM)、Edward Alarcon (加泰隆尼亚理工大学)、Rajiv Joshi (IBM)、Arvind Kumar (IBM)、Matt Ziegler (IBM)、Mike Davies (英特尔)、Rob Aitken (AMD)、Naveen Verma (普林斯顿大学)、Wei Lu (密歇根大学)、Todd Hylton (加州大学圣地亚哥分校)、Andreas Andreou (约翰霍普金斯大学)、Mark Wegman (IBM)、Pamela Abshire (马里兰州立大学)。(照片来源:IBM)qA0ednc

IBM的Lisa Amini和ARM的Rob Aitken发表了主题演讲。Amini谈到关于MIT-IBM Watson AI实验室研究项目的内容令人感到兴奋,该实验室最近庆祝成立一周年。Amini的研究范围包含狭义、广义和一般AI的三层AI,她认为AI研究领域正在开始进入广义的AI,而一般的AI仍然是未来的长期发展目标。Aitken随后发表了主题演讲,描述了目前有多少AI相关的问题浮现出来,代表着目前不断变动的目标和规则,而非传统运算问题的固定目标和规则。Aikten也介绍了一些实用的方法,如何将复杂问题细分为可管理的项目,这些项目提供了解决复杂AI难题的方法。最后,他总结提到,物联网需要具有AI和机器学习应用的分布式系统,包括实时性、可解释性和安全性。qA0ednc

在专题演讲之后,英特尔的Mike Davies和IBM的Jeff Burns受邀在“产业观点”的场次进行演讲。这些演讲内容提供了短期与长期的产业观察全貌,内容涵盖架构、电路设计和半导体技术。Davies的演讲重点是英特尔的Loihi神经形态芯片(neuromorphic chip),以及神经形态研究的未来方向。尽管Loihi是一个数字芯片,但此研究途径超越了传统的冯纽曼架构(von-Neumann architectures)。另一方面,Burns的演讲重点为目前投注的努力和未来加速深度学习的计划。Burns描述了近期以模拟电路设计提升专业数字加速器(specialized digital accelerators)功能的愿景,以及未来的设备技术。qA0ednc

接下来,在“生物启发运算(Bio-inspired Computing)”场次上,约翰霍普金斯大学(Johns Hopkins University)的Andreas Andreou提供了许多生物启发芯片设计的例子,其中许多例子关于DARPA等组织感兴趣的系统零件,用来解决复杂问题。来自加州大学圣地亚哥分校(University of California, San Diego)的Todd Hylton,提出了热力运算的概念,作为未来运算研究的潜在方向,算是最具启发性的一场演讲,他认为技术的演进倾向透过程序设计、训练和奖励。qA0ednc

第三场讲座的主题关于“新兴技术”,演讲者为密歇根大学(University of Michigan)的Wei Lu和普林斯顿大学(Princeton University)的Naveen Verma。Lu介绍了近年来电阻式随机存取内存(RRAM)零件和芯片级设计与制造的研究进展。他描述了RRAM如何为神经形态运算提供一个平台,是未来AI运算的一个潜力发展方向。Verma提出了一个关于内存运算的电路和架构方法的案例,这也是AI界高度关注的另一个主题,他介绍了几种制造芯片的测量结果,为内存内运算(in memory computing)的发展潜力提供了有力证据。qA0ednc

研讨会还举办了一场学生专题研究海报展,出席人数众多,约有30名学生在会场上介绍AI运算主题。现场有许多引人注目的研究项目,有两个项目获奖,一个是加州大学伯克莱分校(UC Berkeley)的Sohum Datta,研究项目为“2048-dim通用超维度处理器(A 2048-dim General-purpose Hyper-Dimensional Processor)”。密歇根大学Jingcheng Wang为另一个获奖者,研究项目为“神经快取(Neural Cache):深度神经网络的位串行快取加速(Bit-Serial In-Cache Acceleration)。”qA0ednc

AI2.jpgqA0ednc

学生专题研究海报展。(照片来源:IBM)qA0ednc

研讨会最后一场的座谈会主题为“AI或是人工愚蠢:AI将有多聪明?”参与者包含一些专题演讲与受邀演讲的讲者,以及IBM研究员Mark Wegman。现场充满了热烈的、有时是激烈的讨论,内容从AI研究到AI伦理的进展。Hylton提出了一个案例,在狭义的AI发展上有所突破,但整体发展还未接近真正的AI。有时候Andreou与Wegman针对未来AI研究的进展争论不休,而Verma最后针对双方论点作出总结。此场座谈会不久之后将会在IEEE电视台播放。qA0ednc

总体而言,与会者、演讲者和主办者的普遍共识是,这一天的研讨会提供了一个具有学习性的平台,并引发了运算领域相关重要主题的热烈讨论。关于专题研讨会的技术内容将会被收录在其他出版物(包含书籍、期刊论文等),提供教育资源给任何对此题目感兴趣的人。虽然在早期阶段,IBM和IEEE正在规划未来AI运算相关的活动,请参考此网站了解最新进展。lks告诉我们,他们正在为“通用网关”开发一个软件引擎,进行安全性、连接性和设备管理,目前还没有开发出来。但是当产品开发出来后,我们将会更加关注易于安装的智能家居产品的发展动向。qA0ednc

(原文发表于ASPENCORE旗下EDN姐妹网站EETimes,参考链接: Who's Who in AI Today,by Junko Yoshida)qA0ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Junko Yoshida
ASPENCORE全球联席总编辑,首席国际特派记者。曾任把口记者(beat reporter)和EE Times主编的Junko Yoshida现在把更多时间用来报道全球电子行业,尤其关注中国。 她的关注重点一直是新兴技术和商业模式,新一代消费电子产品往往诞生于此。 她现在正在增加对中国半导体制造商的报道,撰写关于晶圆厂和无晶圆厂制造商的规划。 此外,她还为EE Times的Designlines栏目提供汽车、物联网和无线/网络服务相关内容。 自1990年以来,她一直在为EE Times提供内容。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • Microchip模拟嵌入式SuperFlash技术助力存算一体创新 SuperFlash memBrain存储器解决方案使知存科技片上系统(SoC)能够满足最苛刻的神经处理成本、功耗和性能要求
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • “中国IC设计成就奖”提名产品简介:全志科技高性能智能 高性能三重异构智能语音应用处理器R329芯片,采用业界先进的半导体工艺,首款集成Arm中国周易语音处理器。集成DSP、NPU、64位CPU及丰富的外设接口,创新突破了低功耗、边缘语音AI超级算力、多重异构通讯、多核调度等关键技术,处于国内领先水平。
  • “中国IC设计成就奖”提名产品简介:追萤3D AI芯片Ai310 埃瓦科技自主研发的追萤 3D AI芯片创新的采用了异构架构 SOC 设计和微内核架构设计,包含 NPU 神经网络加速核、3D 立体匹配加速核、ISP 核等功能性处理核心;其中 NPU 神经网络加速核基于可重构以及片上多级存储和缓存设计,使数据可高效送达加速核心,使该芯片拥有领先的高效智能处理能力、分析以及低功耗管理的能力;其设计架构的资源复用性使硬件计算单位可灵活分配,适应于不同场景的计算需求;在 3D 视觉算法加速方面创新的采用了自研立体匹配算法的 3D 加速微内核架构设计,可有效加速双目立体视觉、结构光等多种 3D 视觉算法。
  • “中国IC设计成就奖”提名产品简介:ada200优势 1.九天睿芯,感存算一体芯片,可以在功耗和性能满足”低功耗AI场景“的同时,成本也大幅度下降。2.采用模数混合的存内计算架构,ADA200相比传统数字芯片,1/3成本,1/10功耗。
  • “中国IC设计成就奖”提名产品简介:面向边缘视觉分析的 面向边缘视觉分析的数据流AI芯片CAISA是鲲云科技自主研发的专为人工智能图像提供高性能计算加速的AI芯片产品,是全球首个量产的数据流AI芯片。
  • “中国IC设计成就奖”提名产品简介:人工智能语音芯片CI 1、人工神经网络硬件引擎架构:具备高计算性能,进行神经网络计算时相当于数十个CPU并行计算的能力;低访问带宽和低功耗,通过并行计算和共用神经元权重参数,大幅降低访问带宽及功耗;高可配置性,支持神经元层数和节点数、神经网络结构的配置。 2、单、双、及麦克风阵列降噪增强技术:支持各种平稳、非平稳环境噪声抑制;可支持线阵、圆阵结构等常用麦阵结构;采用定向波束形成与自适应信号处理技术相结合;拾取方向动态可调;支持单声道、立体声等回声抑制;采用独立研发的空间预测技术,支持强回声情况下回声抑制;与降噪处理技术相结合;自动增益调节、高通、带通滤波等。 3、低功耗和可靠性设计技术:具备低功耗集成电路设计技术,包括基于活动语音检测的低功耗控制技术和时钟门控技术。 4、逻辑设计技术:掌握了语音信号处理IP的设计方法,包括算法硬件化、定点、浮点运算处理等。同时积累了整套SoC设计所需的控制类IP,并成功通过流片验证。
  • “中国IC设计成就奖”提名产品简介:智能安防AI SoC芯片 亿智SV826是2021年推出的高性能的安防AI SoC芯片,主要面向视频编解码AI摄像机产品。
  • “中国IC设计成就奖”提名产品简介:低功耗视觉AIoT SoC 亿智SH516芯片是亿智电子2021年推出的一款低功耗的智能视觉AIoT SoC芯片。
  • “中国IC设计成就奖”提名产品简介:高性能大算力全场景 - AI性能跑分更强,超越Nvidia Orin - 应用当前先进的安全技术和研发流程 - 国内唯一可获得、支持快速量产的整车智能计算平台芯片
  • “中国IC设计成就奖”提名产品简介:高端AIoT芯片RV1126 RK3568是瑞芯微的高端AIoT芯片。
  • “中国IC设计成就奖”提名产品简介:玉龙人工智能芯片Yu 玉龙(YULONG)是欧比特公司推出的新一代嵌入式人工智能系列处理器芯片,是目前市面上唯一的军用级人工智能芯片,并且实现了自主可控国产化生产。芯片聚焦于前端图像处理、前端信号处理和智能控制,芯片具有深度学习、神经网络算法的平台加速能力。Yulong810APro芯片为异构多核架构(CPU+AI加速器),采用FD-SOI生产工艺,具有高性能、高可靠、低功耗的特点,芯片面向航空航天、智能安防、机器人、AIoT、智能制造、智慧交通等应用场景。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了