广告

5G基础设施和对端到端可编程性的需求

2019-04-30 Achronix半导体公司高级产品营销经理Alok Sanghavi 阅读:
展望未来十年,随着5G的出现,无线基础设施将变得更加普遍,甚至与我们日常生活的方方面面完全融为一体。5G延续了先前蜂窝标准(在驱动带宽方面)的模式,但也将其扩展到更多设备和使用模式。本文考虑如何通过具有高性能CPU子系统和包括FPGA可重编程加速硬件处理单元的SoC架构来成功应对5G的独特需求。

1.引言

我们目前处于蜂窝连接的转型时期,未来无处不在的无线连接正在兴起。在全球范围内,2G、3G和4G的成功推动手机使用量达到了令人难以置信的75亿部。令人震惊的是,这使得移动设备的数量比全球人口还要多。或许更具影响力的是,蜂窝连接对那些之前被数字化剥夺权利的人产生的影响;例如,2016年撒哈拉以南非洲地区每100人通常有1部固定电话,但有74台移动连接设备。Mldednc

展望未来十年,随着5G的出现,无线基础设施将变得更加普遍,甚至与我们日常生活的方方面面完全融为一体。5G延续了先前蜂窝标准(在驱动带宽方面)的模式,但也将其扩展到更多设备和使用模式。Mldednc

主要趋势包括:Mldednc

1.对增强型移动宽带(eMBB)和其他应用的带宽增加需求,特别是以10倍现有吞吐量或者更高速率驱动的瞬时可用带宽。Mldednc

    a. 这将是5G标准化带来的首波驱动力,其中3GPP已于2017年完成非独立(即LTE辅助)新无线电(NR),2018年可提供5G独立版,如图1所示。Mldednc

    b. 5G的部署也将根据频段情况分阶段进行,首先部署6GHz以下,然后是毫米波(mmWave)频率的连续频段,以便在稍后阶段支持关键eMBB应用。Mldednc

Achronix-5G-1Mldednc

图1:5G的ITU和3GPP时间表Mldednc

2.随着物联网(IoT)蜂窝网络连接的到来而连接到大量的设备。预计到2020年将有500亿台蜂窝网络连接的设备。这些需求当中的一部分可以通过现有标准满足,同时也要靠Release 16版本中海量机器类通信(mMTC)的现有规范去实现了。Mldednc

3. 新的应用模式也在不断涌现,这对移动设备及其蜂窝无线基础设施提出了新的要求。示例包括:Mldednc

    a.用于连接多个电池供电物联网端点的低带宽、低功耗的要求,以实现mMTC相关的连接和监控;Mldednc

    b.用于车辆到车辆和车辆到基础设施的连接(C-V2X)高可靠性、低延迟蜂窝网络,以补充现有的V2X解决方案Mldednc

    c.为远程手术和增强/虚拟现实等新兴应用提供的高可靠性、低延迟支持Mldednc

后两类应用将通过即将推出的3GPP超可靠、低延迟连接(URLLC)标准来解决。Mldednc

4. 对边缘分析和移动边缘计算(MEC)的新需求。计算重心正在从以前估计的将数据发送到集中式计算资源进行处理,转变为移到位于数据生成原点附近的分布式计算资源的新范例。造成这种转变的原因是多方面的:新兴应用严格的延迟要求、越来越庞大的数据量,以及优化稀缺网络资源的愿望等等许多方面。Mldednc

2.基带

在本文中,我们考虑如何通过具有高性能CPU子系统和包括FPGA可重编程加速硬件处理单元的SoC架构来成功应对5G的独特需求。Mldednc

基带从网络接口(例如以太网)获取数据,并将其转换为通过前传(Fronthaul)接口传输到射频前端进行传入/传出的复杂样本。以下高级原理图包括用于LTE下行链路的发送器(图2a),以及用于上行链路的接收器(图2b)。Mldednc

Achronix-5G-2aMldednc

(a)下行链路Mldednc

Achronix-5G-2bMldednc

(b)上行链路Mldednc

图2:基带处理的高级原理图Mldednc

3.基带L1处理的案例研究

在这里,我们举例说明如何将基带处理(尤其是Layer-1层)映射到关键处理元器件上,如处理器子系统、CPU和DSP内核,以及固定和灵活的硬件加速,如图3所示。Mldednc

Achronix-5G-3Mldednc

图3:关键基带处理元器件Mldednc

3.1. 前传(天线接口)连接

除了前面描述的处理元器件之外,还有一个灵活的天线接口功能模块:这是连接基带和射频单元所需的元件。传统上,这是通用公共无线电接口(CPRI),有时是开放式基站架构计划(OBSAI)兼容的部分。Mldednc

然而,越来越多的方案在转向指定一个更灵活的前传接口,以允许基带和RF前端之间的不同映射(如图4所示)。IEEE对下一代前传接口NGFI(IEEE1914)进行了持续的跟进,包括用于基于分组的前传传输网络标准IEEE1914.1和以太网无线电(RoE)包封和映射标准IEEE1914.1。同时,还有其他行业项目指定了5G前传接口并可共享,例如eCPRI。Mldednc

鉴于前传接口面临的各种规范、标准和要求,FPGA很适合其应用,并通常用于支持此接口,如图3所示。Mldednc

3.2. 可加速5G上市时间的分立结构

图4将5G所需的处理元器件映射为具有独立器件的分立式架构,包括CPU SoC、辅助FPGA加速和天线接口。此配置反映了在可以提供经过优化的5G专用集成电路(ASIC)之前,可以在5G原型设计和早期量产中部署的实施方案。Mldednc

• CPU系统级芯片里面包括:Arm处理器组合以及用于Layer-1处理和硬化加速器的DSP内核,用于固定的、明确定义的功能。Mldednc

    o 在此示例中,假设现有的4G ASIC SoC可用,因此具有通用加速(例如MACSEC)以及LTE特定加速:前向纠错(特别是turbo编解码器)、快速傅立叶变换和离散傅里叶变换,以在上行链路上支持SC-FDMA。Mldednc

• 灵活的天线接口Mldednc

    o 如前所述,前传天线接口非常适合用FPGA来实现。这是在线配置的,数据从射频单元发出(在上行链路上),然后是被转换为诸如以太网等具有标准连接的协议。Mldednc

• 硬件加速FPGAMldednc

    o 辅助加速FPGA实现了在基带SoC上不可提供的所有必要的计算密集型功能。这可以是5G特定的功能或先前未曾规划的功能。Mldednc

    o 在此处显示的示例中,使用了CCIX互连。该标准允许基于不同指令集架构的处理器将缓存一致性、对等处理的优势扩展到包括FPGA和定制ASIC在内的多种加速器件上。Mldednc

Achronix-5G-4Mldednc

图4:可加速5G上市时间的分立结构Mldednc

3.3. 基于Chiplet的5G实现

图5显示了与图4所示类似的架构,但是使用了基于系统级封装芯片(chiplet)的方法进行了重新配置。在这种情况下,一个采用了更高带宽、更低延迟和更低功耗的接口将CPU SoC片芯晶粒与辅助硬件加速chiplet芯片连接起来。支持前传连接到射频单元的FPGA器件在该示例中可以但并不是封装集成在其中的;但实际上,如果有足够的资源,它可以是与硬件加速chiplet芯片相同的chiplet器件。Mldednc

Achronix-5G-5Mldednc

图5:基于Chiplet的方法可实现更高的集成度Mldednc

用于封装集成的两种主要技术是使用硅中介层或有机基板,以及某种形式的超短距离(USR)收发器。Mldednc

3.4.完全集成的5G实现方式

最后,图6展示了本文考虑的最终、最高集成度的基带架构。该方法包括与先前相同的处理元件,具有相同的功能,但嵌入式FPGA(eFPGA)集成在了芯片内。Mldednc

Achronix-5G-6Mldednc

图6:采用单片集成的、应用于5G基带的异构多核系统级芯片Mldednc

这种紧密集成的单片集成方法具有许多优点。与基于chiplet的方法相比,该接口具有更高的带宽、更低的延迟和更低的每比特能耗。此外,资源组合可以根据所考虑的特定应用进行定制,因此避免了不需要的接口、存储器和核心逻辑单元。这样可以实现以上所考虑的三种架构中最低单位成本。Mldednc

如前所述,现在的主要目标是提供更快的上市时间、更高灵活性和未来可用性。之所以能加快了上市时间,是因为SoC可以提前流片,因为可以针对eFPGA进行后期修改(例如5G标准中Polar码的出现)而不是完成即固定的ASIC。来自新算法或者未预计算法(例如新的加密标准)的灵活性可以通过嵌入式可编程逻辑而不是软件或外部FPGA来解决。最后,未来可用性可以延长SoC的生命周期,因为诸如URLLC和mMTC等新标准等大批量新兴需求可以通过现有产品解决,而不需要进行新的开发。Mldednc

总结

CPU和可编程加速(嵌入式或独立FPGA)的紧密耦合,使开发人员能够去创建可以一个应用于多个不同市场的平台产品。这增加了特定产品的市场适用性并提高了开发投资回报。这甚至可以在流片后再对市场进行定位(或重新定位),即最大化的可编程性所提供的内在灵活性可支持相当大的创新空间。Mldednc

或许从5G的角度来看更为重要的是,高度可编程的解决方案可以加快产品上市速度。例如,在标准最终确定之前,不再需要推迟SoC的流片时间,后续改变的需求可以在软件或可编程硬件中实现。这对于早期5G部署所面临并在不断增加的压力,以及应对新标准的不断涌现,这是一个突出优势。Mldednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 拆一台苹果万元iMac电脑标配适配器,做工如何? Apple苹果的24英寸iMac已经上市有一段时间了,搭载苹果M1处理器的它性能相较上一代提升了85%,同时机身体积还小了50%。苹果24英寸iMac原装143W适配器A2290,其自带一条特殊的输出线缆,支持15.9V9A输出,下面就随小编一起来看看电源的具体用料做工。
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
  • 泰克在其屡获大奖的高性能示波器中增加5G功能 工程师可以使用最新5G软件,在一台示波器上诊断复杂的信号交互,减少麻烦的仪器之间关联需求。
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • “中国IC设计成就奖”提名产品简介:低压高速比较器GS87 低功耗超高速GS8743系列比较器,集成了内部迟滞,优化的系统供电范围。具有快速响应、低功耗、低输入失调电压和轨对轨输入输出等特点。内部输入迟滞消除了由于外部输入噪声电压造成的输出切换,工作温度范围为-40℃至+85℃。GS8743系列比较器工作电压为2.7到5.5V,最大输入失调电压为5mV,每通道静态电流为1.3mA,响应时间为6ns。
  • “中国IC设计成就奖”提名产品简介:车规级数字通讯隔离 Chipways汽车级电池组隔离器XL8820系列产品是同时满足AEC-Q100汽车可靠性标准和ISO 26262汽车功能安全标准的车规级隔离式通讯接口芯片。
  • “中国IC设计成就奖”提名产品简介:16位250KSPS多通道S MS5182N/MS5189N是4/8通道、16bit、SAR型模数转换器。MS5182N/MS5189N内部集成无失码的16位SAR ADC、低串扰多路复用器、内部10PPM低漂移基准电压源(可以选择2.5或4.096V)、温度传感器、可选择的单极点滤波器以及当多通道依次连续采样时非常有用的序列器。
  • “中国IC设计成就奖”提名产品简介:集成隔离电源的隔离 CA-IS3062W是川土微电子在2020年12月推出的一款隔离式控制区域网络(CAN)物理层收发器,同时内部集成隔离式DC-DC转换器。符合ISO11898-2标准的技术规范。此器件采用片上二氧化硅(SiO2)电容作为隔离层,在CAN协议控制器和物理层总线之间创建一个完全隔离的接口,配合内部集成的隔离式DC-DC,可隔绝噪声和干扰并防止损坏敏感电路。
  • “中国IC设计成就奖”提名产品简介:电源管理芯片 - 多 由东莞市长工微电子有限公司自主研发设计的IS6201A是国内首颗超低静止功率双输出8相PWM控制器,是用于CPU、GPU、FPGA和ASIC等芯片供电的双路数字多相降压控制器。
  • “中国IC设计成就奖”提名产品简介:兆易创新电源管理芯 兆易创新全新的电源管理芯片GD30WS8805系列,在高效率和高集成方面实现了进一步的突破。该系列芯片拥有超低的静态电流,睡眠模式下,消耗电流小于5μA;支持最大1.2A的对电池充电电流,最大600mA的对耳机充电电流;使用开关式充电,BOOST转换效率达到95%,处于业界领先水平,热损耗也更低;低功耗、高效率的特性,有助于增加耳机电池的使用寿命。
  • “中国IC设计成就奖”提名产品简介:集成电源和电池管理 集成电源和电池管理的PMIC MCU,该产品是专为TWS蓝牙耳机充电仓开发的SoC单芯片解决方案。片上集成了32位MCU、电源路径管理、充电电路、升降压电路、集成16位ADC的电量计、LED驱动、耳机通信接口电路、无传感插入检测电路、保护电路等功能。独立电源控制策略,功率电路都可以由软件控制开启或关断,增加了系统开发的灵活性。
  • “中国IC设计成就奖”提名产品简介:FORESEE车规级eMMC 2020年,江波龙电子旗下行业类品牌FORESEE发布车规级eMMC,并通过AEC-Q100验证,成为国内为数不多通过AEC-Q100验证的存储品牌之一。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了