向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

通用运算放大器并不能用于所有用途:精密的准确性和成本效益

时间:2019-08-07 作者:Farhana Sarder 阅读:
我们常发现客户将通用运算放大器如LM321用于电流检测应用。这是数十年来一直在使用的传统运算放大器之一。这些传统运算放大器成本低,用于无数应用。然而,有时同样的客户又向我们反馈,说这些运算放大器在其电流检测电路中出现故障。当我们查看退回的运算放大器单元时,它们按预期工作。那么问题出在哪里?

我们常发现客户将通用运算放大器如LM321用于电流检测应用。这是数十年来一直在使用的传统运算放大器之一。这些传统运算放大器成本低,用于无数应用。然而,有时同样的客户又向我们反馈,说这些运算放大器在其电流检测电路中出现故障。当我们查看退回的运算放大器单元时,它们按预期工作。那么问题出在哪里?

因为运算放大器是“通用的”并不意味着“可用于所有用途”。电流检测应用需要精密。电流检测通常用于电源管理和过流保护应用。想象一个不精确的世界。当您的手机电量快耗尽时,电量指示可能是8%。您可能设计在100A触发的过流电路,却发现保护电路在150A才启动,所有下游器件都被损坏。这就是通用和精密的区别。

一个精密运算放大器的关键是输入失调电压。其共模抑制比(CMRR)和电源抑制比(PSRR)也有更好的规格,但这两个参数都可当作随共模电压或电源电压变化的输入失调电压。什么是输入失调电压?输入失调电压是每一个运算放大器输入的固有偏置,是由于制造工艺引起的输入晶体管轻微失配。在学校时,我们了解到理想的运放具有零输入失调电压,但我们知道在现实世界不是这样。

传统通用运算放大器如LM321有VOS =±7mV(最大值),现代通用运算放大器如NCS20071有VOS =±3.5 mV(最大值)。此最大规格分布在零附近。这说明大多时候随机选择的器件将表现出近零的偏置。您可以确信,您的原型电路与常用的LM321一起完美工作,但当电路进入量产时,您可能会发现发生故障的比例相当大。这是因为制造工艺产生器件间变异(part-to-part variation),并且一些器件接近限值。您应始终为电路设计最大输入失调电压。

我们有时看到客户忘记检查电路在最坏情况下的限值:输入失调电压限值、CMRR限值、电阻网络容差、温度效应等。

相较LM321和NCS20071通用运算放大器,新的NCS21911精密运算放大器由于其斩波稳定式结构,最大失调VOS = ±25µV(微伏)。失调电压实际上产生多少差异?让我们考虑这样一种状况:分路压降为固定的50mV,如图1所示。

006ednc20190807

图1. 对比输入失调电压和由此产生的输出偏移误差。

输入失调电压7 mV和3.5 mV的放大器具有明显的输出偏移误差。

我们可更仔细看看图2中Vos=7 mv的示例。

007ednc20190807

图2. 低边电流检测和输入失调电压造成输出误差

通过选择精密运放如NCS21911,输入失调电压造成的误差在这电路示例中几乎可忽略不计。它不仅提高了输出精度,甚至还有一些余量来减小检测电阻尺寸,并仍保持所需的精度。

由于低失调电压支持降低检测电阻值,同时保持相同的精度,如图3所示,效率得以大大提高。当检测电阻尺寸减小时会发生什么?检测电阻功耗更少,这意味着可以使用更低瓦特和更低成本的电阻,而物理尺寸更较小的检测电阻最终占用pcb的空间更少,提高了系统的整体能效,减少了损耗。

008ednc20190807

图3. 对比固定精度要求下输入失调电压和由此产生的分路压降。分路压降越小,效率越高。

在许多应用中,流过检测电阻器的负载电流是可变的。有时当客户尝试在0A附近进行电流测量时,他们发现误差显著增加;这是正常的,应该是预期的。当电流降至零时,误差百分比变为无穷大。这电流检测电路用于测量电流;不是用于在没有电流时的精确测量。图4显示了精度如何随着电流增加而提高。注意由于输入失调电压导致的误差变化。即使当检测电压降低时,NCS21911的25µV偏移也支持相对精确的测量。

009ednc20190807

图4. 由于输入失调电压造成的误差

似乎在效率和精密性上的小改进可以节省物料单、印刷电路板(PCB)成本和电费。虽然选择较便宜的运算放大器可能会在前期省一些钱,但考虑到最终系统级的节省可能是您的优势,通过采用价格合理的精密运算放大器。

在许多应用中,通用运算放大器会正常工作。即使传统的LM321也可在已设计相应电路的电流检测应用中工作。记住,您应该预期相对较高的输出误差。或者,检测电阻器的尺寸应当较大,以获得比输入失调电压足够大的压降。

对于低边电流检测,转向精密运放提高了精度和系统能效。NCS21911精密运算放大器有一个标准输出引脚,使其只需简单插入就能替代通用运算放大器如LM321和NCS20071。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 如何使用浪涌电流限制器NTC 在启动电子设备(如开关电源(SMPS)或逆变器)时,设备会通过具有高峰值的瞬时异常电流。它被称为励磁涌流,如果没有保护,它可能破坏半导体器件或对平滑电容器的使用寿命产生有害影响。NTC热敏电阻用作ICL(励磁涌流抑制器),方便、有效地保护电气、电子器件的电路免受励磁涌流的影响。
  • 阳光电源的125kW 1500VDC串联逆变器SG125HV 阳光电源的1500VDC、三相、光伏并网逆变器是光伏发电系统不可或缺的一部分。
  • 如何处理模拟误差? 没有什么电路或系统是完美的,所以真正的问题是「对于应用来说够不够好?」不过,这经常是一个两难的问题...
  • 作为一名工程师,最大的成就感来自哪里? 近日小编在某乎上发现了一个有趣的话题《作为一名工程师,最大的成就感来自哪里?》,话题中一位昵称为Patrick Zhang的电气工程师表示:“我最引为自豪的不是设计某工程,而是工程故障分析。原因很简单,故障分析最能体现个人技术水平。”并分享了他经历过的四个案例,获得了近五千的点赞。EDNC小编在获得作者授权后,将这位工程师的经验与感想分享给大家。
  • 5G设计: ADC的容性参考电压稳定技术 5G无线接收器需要中等的分辨率和速度,将SAR ADC与容性DAC耦合,是实现其高能效转换的常用方法。结合流水线、交错和数字校准等技术,混合ADC方案已经证明可以达到12位ENOB(有效位数)的精度,以及数百MHz的速度。凭借这些特性,这类ADC可以满足5G应用所需的高吞吐量要求。
  • PI推出全新PrimePACK 3+即插即用型门极驱动器 新产品可与英飞凌的PrimePACK™3+和富士电机同类的IGBT模块配合使用,为两电平和三电平应用提供方案。SCALE-2™ 2SP0430T2XX门极驱动板适合工业、牵引、UPS和可再生能源应用,并且可为1200 V和1700 V IGBT模块提供加强绝缘。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告