广告

仪表放大器 —— 可避免常见的设计陷阱

2019-08-07 10:40:34 Bruce Trump 资深模拟工程师 阅读:
25年以来,我们一直在向人们展示一幅图表,强调正确运行所要求的必要输入偏置,但广大设计人员似乎都没有注意到这一点。之所以会这样也许正是因为它的名字——仪表放大器。它听起来像是实验室仪器,例如:示波器或者频谱分析仪等,包括一些随时可用的输入。好吧,差不多是这样,但仪表放大器需要您更小心一些。

仪表放大器(IA)是运算放大器和反馈电阻的结合,用于精确地获取和放大信号。 使用这些通用放大器的一个常见错误是没有为输入偏置电流提供一条通路。W4Sednc

25年以来,我们一直在向人们展示一幅图表,强调正确运行所要求的必要输入偏置,但广大设计人员似乎都没有注意到这一点。之所以会这样也许正是因为它的名字——仪表放大器。它听起来像是实验室仪器,例如:示波器或者频谱分析仪等,包括一些随时可用的输入。好吧,差不多是这样,但仪表放大器需要您更小心一些。W4Sednc

每个输入都直接连接至双极晶体管基极(请参见图 1a)或者 FET 栅极(请参见图 1b)。双极晶体管要求基极电流工作。浮动热电偶电压源不提供该电路通路。没有该电流通路的情况下,输入会出现饱和,从而形成无效输出电压。W4Sednc

003ednc20190807W4Sednc

即使是一个极低输入偏置电流的 FET 输入 IA(例如:INA116)也要求一条偏置电流通路。 尽管首次上电时图 1b 所示 AC 耦合电路可能会看似正常工作,但输入电容会通过微输入偏置电流缓慢充电,并且输出好像会不稳定或者偏离其起始值。每个输入的接地电阻器会对该电路正确偏置,同时在 FET 输入的输入偏置电流极低的情况下 10MΩ 电阻会非常有效。 请注意,许多电路均不会要求采取特殊的预防措施。如果差动输入电压源能够提供输入偏置电流,并且其参考导电通路接地,则无需特殊预防措施。请参见图 2。W4Sednc

004ednc20190807W4Sednc

图 3 显示了正确偏置 IA 输入的三个例子。所选应用和 IA 的特性不同,图中所示电阻器值可能也会不同。W4Sednc

005ednc20190807W4Sednc

在如何提供这种电流通路方面,存在许多差异。图中仅显示了三种通用案例。只需一点点创造性,您便可以找到一种适合您应用的方法。如果您对我们的高精度放大器有什么建议,请访问我们的论坛。 我又一次想到了这种放大器的名字:仪表放大器,这可能就是它经常被人忽略的原因。顺便说一下,在处理运算放大器输入时我们也可能会犯同样的错误。至于原因,我认为无需解释,不是吗?W4Sednc

本文转载自《看一个TI老工程师如何驯服精密放大器W4Sednc

 W4Sednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • USB供电的5.8GHz RF LNA接收器,带输出功率保护功能 图1所示的电路来自高性能RF接收器系统,具有+23dB增益,优化之后,支持采用5.8GHz中心频率。其输入未经滤波,保持2dB噪声系数,但输出端配有带通滤波器,会衰减带外干扰。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
  • 采用晶振控制的斜坡发生器 本项目源于需要为HP 8620C射频扫频振荡器产生线性晶体控制斜坡信号。它的灵感来自之前发布的斜坡发生器设计。这种设计存在两个问题:它使用了非标准的16.384MHz晶体振荡器;其斜坡的下降/返回/消隐时间为零。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 给变压器烙铁DIY一个温度“稳定器” 多年来,我一直对变压器烙铁头的没有温度控制而感到恼火。可能所有使用变压器烙铁的用户都注意到,使用这种烙铁进行焊接需要大量练习,以免因温度过高而造成损失。问题在于无法控制烙铁头温度,我决定稍微DIY一下。
  • 高清音频的重大突破:优化TWS耳机的音频传输和播放 随着对高清(HD)音频的兴趣不断攀升,对具有高级功能的高清TWS耳机的巨大需求正达到顶峰。本文介绍了高清音乐传输背后的技术,以及音频设计人员如何满足日益增长的需求。
  • 拆解:苹果AirTag追踪器 有人猜到这次要拆解什么产品吗?当然是苹果的AirTag追踪设备。既然之前都已经拆解了Tile Mate,当然也只有对AirTag进行同样的检查才算公平,对吧?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了