广告

差动放大器:良好匹配电阻器不可或缺的器件

2019-08-14 Bruce Trump 资深模拟工程师 阅读:
差动放大器:良好匹配电阻器不可或缺的器件
在单片IC设计过程中,我们常常会竭尽所能地对内部组件进行精确的匹配。例如,精确匹配运算放大器的输入晶体管,旨在获得低失调电压。如果我们必须使用属于我们自己的离散晶体管运算放大器,则我们会得到 30mV 甚至更高的失调电压……

在单片IC设计过程中,我们常常会竭尽所能地对内部组件进行精确的匹配。例如,精确匹配运算放大器的输入晶体管,旨在获得低失调电压。如果我们必须使用属于我们自己的离散晶体管运算放大器,则我们会得到 30mV 甚至更高的失调电压。精确匹配组件的这种能力包括片上电阻器的使用。LWlednc

集成差动放大器利用高精度片上电阻器匹配和激光修整。这些集成器所拥有的卓越的共模抑制性能,有赖于精心设计集成电路的精确匹配和温度追踪能力。图 1 显示了如 INA133 等差动放大器的常用方法,其对一个低电阻分流器的电压进行测量,从而监测负载的电流。要想抑制 10V 共模电压Vs,两个输入端增益必须完全相等并且极性相反。LWlednc

001ednc20190814LWlednc

图 1 中,我假设为一个理想的运算放大器,但输入电阻相互偏差 ±3Ω,并且其25kΩ 额定值中存在 ±0.012% 不匹配。这种非常小的电阻误差,会产生 1.2mV 的10V 共模电压误差。由于分流器电阻的电压为零,10V 共模电压引起的偏移为 1.2mV。LWlednc

在大多数应用中,这是可以接受的,也即常用 50mV 满量程分流器电压 2.4% 偏移误差。但是,如果您使用常见 1% 或者甚至 0.1% 电阻器的差动放大器,则请您仔细检查误差:LWlednc

002ednc20190814LWlednc

如图 1 所示,该表格假设四个电阻器中的两个方向相反,并达到其最大容限,这是对潜在误差的合理估计。如果所有四个电阻器的偏差都达到极限,则这些误差翻倍,但这种情况不可能出现。LWlednc

本例还表明了保持低电源阻抗以及匹配这些差动放大器的重要性。错配电源阻抗带来的额外 ±3Ω,可能会产生不可接受的误差。 值得注意的是,INA133 的内部电阻器并未精确至绝对值。25kΩ 值的精确度仅大约为 ±15%。在获得电阻器输入端大小相同(极性相反)增益的过程中,R1/R2 和 R3/R4 两个比率至关重要。内部差动放大器起到大多数仪表放大器输出级的作用,其存在相同的问题。LWlednc

现在,知道这些集成匹配内部电阻器的值以后,我们再做一次回顾。稍后,我们将讨论如何利用常见 1% 电阻器和优秀运算放大器构建一个完美的差动放大器。LWlednc

本文转载自《看一个TI老工程师如何驯服精密放大器LWlednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 信号发生器输出功率不够大怎么办? 典型的信号发生器可提供25mV至5V输出电压。为了驱动50Ω或更大的负载,一般会在输出端使用大功率分立器件、多个并行器件,或者成本高昂的ASIC。其内部通常使用继电器来调节输出电平,因此会在一定程度上导致工作不连续。
  • 克服PCB板间多连接器组对齐的挑战 小型化已经使得多个连接器对齐变得更加困难,而追求最优的设计实践和尽早地与连接器提供商交流有助于确保设计成功。
  • 苹果首次承认产品有问题,AirPods Pro 耳机召回事件的故 “苹果召回AirPods Pro耳机”,印象中,除了曾经的电池部件问题外,这是苹果第一次公开承认一个产品有问题并承担责任,记得iPhone 4发布的时候,有天线和信号问题,乔帮主可是不屑一顾。由此可以看出,此次苹果产品事件问题比较大,苹果公司也非常重视。因此,我们对此次苹果的AirPods Pro故障产品进行问题解析,产业链梳理等做一个比较全面的分析。
  • 用功率MOSFET制作线性放大器有何风险? 利用功率MOSFET制造线性放大器,可能发生两个问题:在元件封装的栅极引脚与栅极本身之间具有串联的电阻路径,电阻路径位于半导体内部,由嵌入式多晶硅通道组成;功率MOSFET是非常高速的元件,如果将放在线性工作区域,可能会突发寄生RF振荡。
  • 了解相位散布的破坏效应 对于AM收音机来说,音频信号通常都可以在接收端得到很好的复现,但是也并非总是如此。比如,有时播音员说话听起来好像打了30秒喷嚏一般。那么,这到底是为什么?
  • 宽禁带生态系统:快速开关和颠覆性的仿真环境 宽禁带材料实现了较当前硅基技术的飞跃。它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了