广告

高测试连接电容下稳定测试弱电流

2019-12-10 15:10:59 泰克科技 阅读:
本文探讨了4201-SMU和4211-SMU可以进行稳定的弱电流测量的多种应用实例,包括测试:平板显示器上的OLED像素器件、长电缆MOSFET传递特点、通过开关矩阵连接的FET、卡盘上的纳米FET I-V测量、电容器泄漏测量。

源测量单元(SMU)是一种可以提供电流或电压,并测量电流和电压的仪器。SMU用来对各种器件和材料进行I-V表征,是为测量非常灵敏的弱电流,同时提供或扫描DC电压而设计的。但是,在拥有长电缆或其他高电容测试连接的测试系统中,某些SMU可能不能在输出上容忍这样的电容,从而产生有噪声的读数和/或振荡。Vyhednc

4201-SMU中等功率SMU和4211-SMU高功率SMU(选配4200-PA前置放大器)可以进行稳定的弱电流测量,包括在高测试连接电容的应用中也非常稳定,例如使用非常长的三芯同轴电缆来连接器件的应用。与其他灵敏的SMU相比,4201-SMU和4211-SMU的最大电容指标已经提高,这些SMU模块用于可配置的Model 4200A-SCS参数分析仪,使用Clarius+软件进行交互控制。Vyhednc

本文探讨了4201-SMU和4211-SMU可以进行稳定的弱电流测量的多种应用实例,包括测试:平板显示器上的OLED像素器件、长电缆MOSFET传递特点、通过开关矩阵连接的FET、卡盘上的纳米FET I-V测量、电容器泄漏测量。Vyhednc

实例1:平板显示器上的OLED像素器件测试

在测量平板显示器上的OLED像素器件的I-V曲线时,通常会通过开关矩阵把SMU连接到LCD探测站上,这时会采用非常长的三芯同轴电缆(一般在12-16m)。图1是采用Keithley S500测试系统的典型的平板显示器测试配置。S500是一种自动参数测试仪,它可以量身定制,通常用来测试平板显示器。对图中所示的情况,S500中的SMU通过开关矩阵连接到探测站,然后探测卡再把测试信号连接到玻璃平板上的DUT。由于使用非常长的电缆进行连接,所以如果测量技术和仪器使用不当,就会导致弱电流测量不稳定。Vyhednc

例如,如图2示,在使用传统SMU通过16m三芯同轴电缆连接到DUT上时,OLED器件两个I-V曲线中的饱和曲线(橙色曲线)和线性曲线(蓝色曲线)都不稳定。但是,使用4211-SMU在DUT的漏极端子上重复这些I-V测量时,I-V曲线稳定了,如图3所示。Vyhednc

027ednc20191210Vyhednc

图1. 使用Keithley S500测试系统测试平板显示器的配置图Vyhednc

028ednc20191210.jpgVyhednc

图2.传统SMU测得OLED饱和及线性I-V曲线。Vyhednc
Vyhednc

029ednc20191210.jpgVyhednc

图3. 4211-SMU测得OLED的饱和及线性I-V曲线。Vyhednc

实例2:长电缆nMOSFET传递特点测试

可以使用两个SMU生成n型MOSFET的Id-Vg曲线。一个SMU扫描栅极电压,另一个SMU测量漏极电流。图4是典型测试电路的电路示意图,其中使用20m三芯同轴电缆把SMU连接到器件端子上。Vyhednc

030ednc20191210.jpgVyhednc

图4. 使用两个SMU测量MOSFET的I-V特点。Vyhednc

图5显示了使用两个传统SMU及使用两个4211-SMU测量的传递特点。蓝色曲线(使用两个传统SMU获得)在曲线中显示了振荡,特别是在弱电流及改变电流范围时。红色曲线是使用两个4211-SMU得到的电流测量,非常稳定。Vyhednc

031ednc20191210.jpgVyhednc

图5. 使用传统SMU和4211-SMU及20 m三芯同轴电缆生成的nMOSFET Id-Vg曲线。Vyhednc

实例3:通过开关矩阵连接的FET测试

测试通过开关矩阵连接的器件时,可能会面临很大挑战,因为要求额外的线缆。三芯同轴电缆用来把SMU连接到开关矩阵上,再从开关矩阵连接到DUT。图6显示了典型的电路图,其中两个SMU使用远程传感连接开关矩阵。使用远程传感(4线测量)而不是本地传感(2线测量),要求每个SMU连接两条电缆,由于电缆是平行的,所以这会使SMU输出的电容提高一倍。Vyhednc

032ednc20191210.jpgVyhednc

图6. 通过707B开关矩阵把SMU连接到DUT的简化示意图。Vyhednc

在这种情况下,SMU使用2m电缆连接到开关矩阵的行(输入)上;开关矩阵的列(输出)使用5m电缆连接到配线架上。然后再使用另一条1m电缆从配线架连接到探头,所以从一个SMU到DUT的三芯同轴电缆的总长度是: (2 x 2 m) + (2 x 5 m) + (1 m) = 15 m。除了三芯同轴电缆外,开关矩阵本身也增加了电容,在计算测试系统总电容时可能需要包括进去。Vyhednc

在测量通过开关矩阵连接的FET器件的输出特点时,使用两个4211-SMU较使用两个传统SMU的结果明显改善。在这项测试中,其中一个SMU被偏置恒定栅极电压,另一个SMU扫描漏极电压,测量得到的漏极电流。使用两个传统SMU (蓝色曲线)和两个4211-SMU (红色曲线)生成的漏极电流相对于漏极电压关系曲线如图7所示。在进行毫微安培测量时,使用传统SMU测量漏极电流会出现振荡(如蓝色曲线所示)。而在使用4211-SMU测量通过开关矩阵连接的FET的漏极电流时,测量结果稳定(如红色曲线所示)。Vyhednc

033ednc20191210.jpgVyhednc

图7. 使用两个传统SMU及两个4211-SMU测量通过开关矩阵连接的FET的Id-Vd曲线对比。Vyhednc

实例4:拥有公共栅极和卡盘电容的纳米FET

通过使用4201-SMU和4211-SMU,可以在纳米FET和2D FTE上进行稳定的弱电流测量。这些FET及其他器件有时会有一个器件端子通过探测站卡盘接触SMU。图8是纳米FET测试配置的典型电路图。在这个实例中,一个SMU通过卡盘连接到栅极端子。卡盘的电容最高达几毫微法拉第,可以由探测站制造商验证。在某些情况下,可能必需使用卡盘顶部的传导垫接触栅极。Vyhednc

SMU可以使用同轴电缆或三芯同轴电缆连接到卡盘上,具体视探测站制造商而定。同轴电缆卡盘在测试电路中表示为负载电容,因为这个电容出现在SMU的Force HI与Force LO之间,如图中所示的实例。而带有三芯同轴电缆的卡盘则表示为电缆电容。Vyhednc

034ednc20191210.jpgVyhednc

图8. 使用两个SMU测试纳米FET。Vyhednc

在使用两个传统SMU连接2D FET的栅极和漏极时,会产生有噪声的Id-Vg磁滞曲线,如图9所示。但是,在使用4211-SMU连接同一器件的栅极和漏极时,得到的磁滞曲线是平滑稳定的,如图10所示。Vyhednc

035ednc20191210.jpgVyhednc

图9.传统SMU测得的2D FET Id-Vg磁滞曲线。Vyhednc

036ednc20191210.jpgVyhednc

图10. 4211-SMU测得的Id-Vg磁滞曲线。Vyhednc

实例5:电容器泄漏

在测量电容器泄漏时,需要对被测电容器应用一个固定电压,然后测量得到的电流。泄漏电流会随着时间呈指数级衰落,因此通常需要以已知时间周期应用电压,然后再测量电流。视被测的器件,测得的电流一般会非常小(通常<10nA)。图11是使用SMU测量电容器泄漏的电路图。推荐在电路中使用串联二极管,以降低测量噪声。Vyhednc

037ednc20191210.jpgVyhednc

图11. 使用SMU和串联二极管测量电容器泄漏。Vyhednc

图12是使用4201-SMU测量的100nF电容器的泄漏电流相对于时间关系图。由于提高了最大负载电容指标,4201-SMU和4211-SMU在测量电容器泄漏时比较稳定,但是否需要串联二极管,则取决于电容器的绝缘电阻和幅度及电流测量范围。这可能需要做一些实验。Vyhednc

038ednc20191210.jpgVyhednc

图12. 使用4201-SMU测得的100nF电容器的泄漏电流相对于时间关系图。Vyhednc

Keithley 4201-SMU中等功率SMU和4211-SMU高功率SMU为在各种器件和材料上提供电压、进行非常灵敏(<nA)弱电流测量提供了理想的解决方案。这些SMU特别适合在拥有高测试连接电容的测试电路中进行稳定的弱电流测量。与其他灵敏的SMU相比,其最大电容指标已经提高。Vyhednc

 Vyhednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • IC制造生命周期关键阶段之安全性入门 本文包括两部分,我们主要探讨芯片供应商和OEM之间的相互关系,以及他们为何必须携手合作以完成各个制造阶段的漏洞保护。第一部分指出了IC制造生命周期每个阶段中存在的威胁,并说明了如何解决这些威胁。第二部分着重说明了OEM所特有的安全风险,并指出了最终产品制造商和芯片供应商如何承担各自的责任。
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • 金线、银线,不如“无线”?——WiSA无线音频 我们知道,高端无线音频主要是用5GHz,而中低端普遍采用2.4GHz。这方面主要在于频谱的利用和技术原因,2.4G覆盖距离比5G长,但缺点是频宽窄。而WiSA的DS模块却能够做到“2.4GHz 比别人家的5GHz 更好,比自家的5GHz要差”。原因是什么?怎样解决无线音频的痛点?
  • 四个问题帮你确定是否需要采用有源电缆(AEC)解决方案 围绕信道长度、损耗预算和功耗最小化手段等重要问题,每个企业给出的答案都不一样。有如此多的因素推动着最终布线决策,因此在研究你的数据中心选择时,究竟需要了解些什么?
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 适合工业应用的鲁棒SPI/I2C通信 状态监控、工厂自动化、楼宇自动化和结构监控等应用要求外设位于远程位置,通常远离控制器。系统设计人员传统上利用中继器或具有更高驱动强度的驱动器来扩展这些接口,其代价是整体成本和功耗增加。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
  • 在自动驾驶汽车中实现5G和DSRC V2X 车辆通信是实现更高的自动驾驶水平的重要推动因素。但是,长期以来,汽车厂商一直在研究分析所需的无线接入技术应基于蜂窝技术(也称为C-V2X)还是基于直接接入技术(称为DSRC)。在本文中,我们将展示未来的自动驾驶场景需要协调或组合使用这两种技术。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了