广告

对电池供电设备提供保护的极性校正电路

2020-03-31 Vladimir Oleynik 阅读:
对电池供电设备提供保护的极性校正电路
早前概述的一种极性保护电路,可以将电池正确连接到负载,而不论电池在其底座中的方向如何。这个电路可以工作,但存在一些缺点。它的电源电压范围有一定的局限(1.8~5.5V),并且内部电阻略高,因此只能用于电流负荷不超过30mA的产品。幸运的是,由于MOSFET技术的一些重大进步,现在可以克服这些局限。

早前发布的设计实例“Circuit provides reverse-battery protection”当中概述了一种极性保护电路,它可以将电池正确连接到负载,而不论电池在其底座中的方向如何。这个电路采用Maxim公司提供的快速开关、低压、双SPDT CMOS模拟开关IC MAX4636设计,可以工作,但存在一些缺点。它的电源电压范围有一定的局限(1.8~5.5V),并且内部电阻略高,因此只能用于电流负荷不超过30mA的产品。幸运的是,由于MOSFET技术的一些重大进步,现在可以克服这些局限。Y2kednc

图1说明了使用P沟道MOSFET晶体管对负载进行反极性电池保护的方法。通常,要使P沟道MOSFET导通,需要向其栅源控制结施加适当的电压(栅极端为负电位,源极端为正电位)。图1所示的P沟道MOSFET的连接稍有不同,其工作方式如下。Y2kednc

图1:使用P沟道MOSFET保护负载免受反向电池的损坏。Y2kednc

当将电源加到A和B端子(A为正,B为负)时,晶体管的内部二极管D1处于正向偏置,为Q1提供栅源控制电压,从而使其导通。MOSFET的小电阻充当二极管D1的旁路,将电流送到负载。Y2kednc

当电池反向时,电压也施加到A和B端子(但现在是A为负,B为正),晶体管的内部二极管D1受到反向偏置,Q1的栅源电压为0。因此,Q1晶体管截止,负载无电流。Y2kednc

换句话说,这个电路中的P沟道MOSFET Q1,其行为类似于二极管(即虚拟的“D2”),其正向阈值电压非常低。也可以以类似方式使用N沟道MOSFET(图2)。Y2kednc

图2:使用N沟道MOSFET保护负载免受反向电池的损坏。Y2kednc

当A端为正、B端为负时,晶体管的内部二极管D1获得正向偏置,为Q1提供栅漏控制电压,从而使其导通。MOSFET的小电阻为D1二极管分流,从而将电流送到负载。Y2kednc

当向A和B端子反向供电(A为负,B为正)时,晶体管的内部二极管D1受到反向偏置,其栅源电压等于0。MOSFET Q1截止,负载没有电流。Y2kednc

图1图2所示的电路可用于保护负载免受电池反接的影响,而非使用普通的二极管反极性保护,但如果电池反向安装,则无法为负载供电。Y2kednc

图3:这个电路可在任何电池安装情况下为负载供电。Y2kednc

当按图3所示安装电池时,正电位通过P沟道晶体管Q2的正向偏置内部二极管D2施加到其源极。这样会使Q2的栅极处于电池负极的电位,从而使其导通。电池的负极通过N沟道晶体管Q3的正向偏置内部二极管D3连接到其源极。在这种情况下,Q3由于栅极处于电池正极的电位,因此将会导通。总的来说,当电池处于此方向时,Q2和Q3处于放大状态,将电池的电压传送到负载;Q1和Q4则保持断开。Y2kednc

在下一种情况下,电池的安装方向相反。这时,正电势通过P沟道晶体管Q4的正向偏置内部二极管D4施加到其源极。由于Q4的栅极处于电池负极的电位,因此它会导通。Q1的内部二极管D1受到正向偏置,从而可以将来自电池负极的电势施加到N沟道晶体管Q1的源极。由于Q1的栅极处于电池正极的电位,因此Q1导通。由于Q1和Q4双双导通,因此电池被连接到负载,而Q2和Q3则处于关断状态。Y2kednc

请注意,这个设计当中有项安全功能,利用到了MOSFET的内部二极管。晶体管Q1~Q4中的二极管互相连接,形成了全桥整流器。万一MOSFET无法工作,二极管电桥仍然可以对输入进行整流,从而为负载提供正确极性的电力。Y2kednc

附录

图3中所示的电路,其适用电压相对较低,不超过N沟道和P沟道MOSFET的最大允许栅源结,通常为±15~20V。对于需要更高电池电压的应用,应对图3中的电路进行修改,以保护MOSFET的栅源结,如图4所示。Y2kednc

图4:保护MOSFET的栅源结。Y2kednc

这个电路中增加了齐纳二极管D5~D8,用以保护MOSFET的栅源结。电阻R1和R2起到限流作用。在大多数情况下,D5~D8的Vzener(反向击穿电压)值应该在12至13V之间。这足以打开MOSFET,获得其最小Rds-on值。R1和R2的值(R1 = R2 = R)可以按下式进行计算:Y2kednc

R = (Vbatt–Rds-on×Iload–Vzener)/IzenY2kednc

其中,Vbatt是电池电压,Rds-on是MOSFET导通时的漏源电阻,Iload是负载电流,Vzener是齐纳二极管的反向击穿电压,而Izen是齐纳二极管的工作电流。Y2kednc

注意:这款Maxim的器件在+3V电源下会带来11Ω(2×5.5Ω)的串联电阻,而在+5V电源下会带来8Ω(2×4Ω)的串联电阻。Y2kednc

(原文刊登于EDN美国版,参考链接:Polarity-correcting circuit protects battery-powered devicesY2kednc

本文为《电子技术设计》2020年4月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里Y2kednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深入理解汽车电子的ESD之控制器篇 正确理解ESD的内容对于汽车电子设计是非常有帮助的,本文仅就ESD之控制器的以下内容展开讨论:控制器ESD测试项需求解读;ESD保护电路设计要点;ESD测试标准。
  • 如何提高系统的ESD的承受能力? ESD关乎电路的生存,但您也应该考虑功能性的干扰。这也许包括需很长恢复时间的模拟电路过载。在数字电路或系统处理器中的受干扰比特会是个更大的问题……
  • 针对恶劣工业环境选择以太网的三大注意事项 在本文中,我将简要描述为您的系统选择以太网物理层时要考虑的三个更重要的因素。
  • 深入理解汽车电子的ESD之元器件篇 正确理解ESD的内容对于汽车电子设计是非常有帮助的,本文仅就ESD元器件的以下内容展开讨论:(1) 数据手册参数解读;(2) ESD执行的标准;(3) ESD测试标准。
  • 当心回路增益 本文利用一个总反馈为单位增益电压跟随器的运算放大器简化模型,对回路增益展开深入讨论。
  • 工程师该如何避免“接地错觉”? 作为一名学生和工程师,经过多年的深入研究,您可能会忘记电子电路理论中的一些基本概念,例如叠加、戴维南等效、诺顿等效和网孔分析等,而主要关注一种技术,即节点电压分析。此时正是致命的错误观念渗入我们思想的时候,接地节点经常被误以为是所有电荷的物理入地点。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了