广告

什么是运算放大器?

2020-03-23 德州仪器(TI) 阅读:
什么是运算放大器?
许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。

许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。qfsednc

当输入电压相等时,运算放大器通常在线性范围内工作,而运算放大器正是在线性范围内准确地执行上述功能。然而,运算放大器只能改变一个条件来使输入电压相等,即输出电压。因此,运算放大器的输出通常以某种方式连接到输入,这种通常被称为电压反馈。qfsednc

在本文中,我将解释一个通用电压反馈运算放大器的基本操作,并请您参阅其他内容以了解更多信息。qfsednc

图1描述了运算放大器的标准示意图符号。有两个输入端(IN+, IN-)、一个输出端(OUT)和两个电源端(V+, V-)。这些端的名称可能因制造商而异,甚至单个制造商也可能使用不同的名称,但它们仍然是相同的五个端。qfsednc

例如,您可能会看到Vcc或Vdd而不是V+。又或者,您可能会看到Vee或Vss而不是V-。电源端子的其他标签会有所不同,因为它们指的是器件内部的晶体管类型。例如,当在运算放大器内部使用双极结型晶体管(BJT)时,电源对应于BJT的集电极和发射极:Vcc和Vee。在运算放大器内部使用场效应晶体管(FET)时,电源标签与FET的漏极和源极相对应:Vdd和Vss。如今,许多运算放大器同时包含BJT和FET,因此V+和V-是常见的标签,与器件内部的晶体管无关。简言之,不要太在意引脚标签,只要理解它们的作用即可。qfsednc

qfsednc

图1:通用型运算放大器示意图符号qfsednc

等式1表示运算放大器的传递函数:qfsednc

qfsednc

(1)qfsednc

 qfsednc

在等式1中,AOL被称为“开环增益”。在现代运算放大器中,它通常是一个非常大的值(120 dB或1,000,000 V/V)。例如,如果IN+和IN-之间的电压差仅为1mV,运算放大器将尝试输出1000V!在这种配置中,运算放大器不在线性区域内工作,因为输出不能使输入彼此相等(记住,理想情况下In+等于In-)。因此,运算放大器需要一种方法来控制开环增益,即通过负反馈来实现。qfsednc

图2描述了作为反馈控制系统一部分的运算放大器。您会注意到输出OUT通过一个标记为ß的块反馈到负输入IN-。ß被称为反馈因子,通常使用电阻来降低输出电压。qfsednc

qfsednc

图2:负反馈运算放大器qfsednc

图3比较了开环运算放大器和负反馈运算放大器。这些TINA-TI™软件仿真电路采用的运放是近乎理想的运放,加了电源来限制输出电压。注意,对于左侧的开环配置,输出几乎等于正电源(V+)。这是因为输入引脚之间有一个很小的差异(100mV)。这种小电压被开环增益放大,开环增益会强制输出到其中一个电源电压。在图3右侧的负反馈或闭环电路中,运算放大器输出上的分压器需要200 mV的输出电压,以便使反相和同相输入相等。qfsednc

qfsednc

qfsednc

图3:开环(左)与负反馈(右)qfsednc

输入电压的放大称为增益。它是反馈回路中电阻值的函数。等式2描述了图3中右边电路的增益方程,这就是所谓的同相放大器。您将看到计算出的输出电压与仿真相符。qfsednc

qfsednc

(2)qfsednc

运算放大器的输出受到电源电压的限制。图4是图3中同相放大器的输出电压与输入电压的关系图。注意当输出接近正负电源时,输出由于饱和受限。qfsednc

qfsednc

qfsednc

图4:同相放大器电路的输出与输入电压qfsednc

由于这个限制,在图5中可以看到,随着输出接近电源,输入引脚之间的电压差Vdiff增加。只有当输入几乎相等时,运算放大器才在线性区域工作。qfsednc

qfsednc

qfsednc

图5:同相放大器电路的Vdiff和IN+qfsednc

为了更深入地了解运算放大器,请查看我们的模拟课程TI高精度实验室。本课程将深入探讨运算放大器,并讨论输入失调电压(Vos)、输入偏置电流(IB)和输入/输出限制等基本非理想因素。还有一些高级主题讲座,如运算放大器带宽(BW)、压摆率(SR)、噪声、共模抑制比(CMRR)、电源抑制比(PSRR)和稳定性。除了讲座之外,有些主题还包括动手实验。为了进行这些实验,您需要相应的运算放大器评估模块。qfsednc

如果您喜欢DIY一些电路,那么可能会对通用DIY放大器电路评估模块(用于单通道运放)、双通道通用DIY放大器电路评估(用于双通道运放)或DIP封装转换评估模块(可与标准的打样板或电路试验板一起使用)感兴趣。DIY-EVMs支持不同封装的运放,并具有许多标准运算放大器电路,如本文所述的同相放大器、反相放大器、缓冲器和滤波器(包括Sallen-Key和多反馈)。由于双列直插式封装(DIP)转换EVM可以将许多标准的表面贴装封装转换为DIP,以便与电路试验板一起使用,因此您可以评估任何配置的放大器。qfsednc

这就是运算放大器的基本原理:只有当输入引脚的电压相等时,运算放大器才是线性的。然而,为了实现这一点,运算放大器只能调整其输出电压。输出摆幅限制会导致输入电压差增大,从而导致非线性。qfsednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • RMS所应了解的五件事 本文对下面五个与RMS相关的信息,着重强调了它们的实用价值:RMS是给定信号段的特定属性;滤波与求平均值不是一回事;RMS并非总是与功率有关;在采样系统中,RMS比均值更优;无法通过对连续的RMS结果滤波来提高精度。
  • 可保持CMRR的可变增益超平衡电路设计 超平衡电路是一种差分放大器,可以为平衡线路的两个脚提供相同的输入阻抗。某些调音台中所使用的交换系统必须要使用平衡负载,从而确保信号平衡和共模抑制比(CMRR)始终得到保持。
  • 音频功率放大器的温度漂移补偿 本文介绍的技术可以补偿直接耦合AB类音频功率放大器输出中的DC电压漂移。直接耦合输出的主要好处是改善了低音响应。由于该设计省去了隔直电容器,因此其低频传输特性得到了显著改善。
  • 建立时间 建立时间是运放阶跃响应进入和停留在最终值的特定误差范围内的所需时间。它在一些应用中十分重要,例如驱动AD转换器,数字化的快速变化输入。但我们先超越这个定义看一看,聚焦在建立波形的特性上。
  • 斩波型运放及其噪声 斩波型运放提供较低的失调电压,同时也极大地减少了1 / f(闪烁)噪声。它是怎么做到的?这篇短文就来讨论这个主题。
  • 经常被误解的运放压摆动作 运放的压摆动作经常被误解。压摆率是一个内容较多的话题,我们需要将它进行分类讨论。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了