广告

如何接收22kHz以下的无线电波?

2020-12-30 Giovanni Di Maria 阅读:
本设计实例打算“收听”位于0到22kHz之间的频段。这些频率非常低,与人类可以听到的音频频率相对应,但也与电磁波发射有关。如果生成这些频率的信号非常简单,那么构造调谐天线就不那么容易,因为相应的波长等于几百公里。

本设计实例打算“收听”位于0到22kHz之间的频段。从下方频带范围可以看出,这些频率非常之低,与人类可以听到的音频频率相对应,但也与电磁波发射有关。如果生成这些频率的信号非常简单,那么构造调谐天线就不那么容易,因为相应的波长等于几百公里。例如,若要将半波偶极子调谐到1,500Hz频率,其范围应约为50km,这样做就不切实际。对于这样的低频信号,市场上没有令人满意的接收器,因此就必须精心准备天线。我们计算机声卡的行为就像个出色的接收器,但必须连接到合适的天线。除声卡外,还需要有软件对所接收信号进行查看、记录和分析。VLF频带仅占整个无线电频谱的一小部分,许多动物和人类也可以接收这种信号中的一部分,而我们的大脑对ULF频段更敏感。nEpednc

频段频率

ELF(极低频):3Hz至30HznEpednc

SLF(超低频):30Hz至300HznEpednc

ULF(特低频):300Hz至3kHznEpednc

VLF(甚低频):3kHz至30kHznEpednc

LF(低频):30kHz至300kHznEpednc

听还是读?

在这些低频频段,扬声器或耳机听不到信号,或者相反,声音可以发出,但不是主要活动,通常在其他频率上的情况也是如此。相反,各种发射可以通过解码和对频谱图进行适当解释来“收听”(参见图1)。使用软件或硬件分析频谱非常有用,并且是分析和记录这一频段信号的主要手段。从时域记录可以看出,X轴表示经过的秒数,Y轴表示所记录信号的频率。图形的着色或强度(Z轴)不同说明了其功率大小。nEpednc

nEpednc

图1:0至24kHz频带的典型单色频谱图。nEpednc

如今,接收低频无线电信号非常容易,并且不必拥有昂贵的接收器。配备一台装有声卡和软件的个人计算机就足以对观察到的频段进行分析。在这些频率的频谱图中,可以观察到各种自然信号和人为信号。后者总是以编码和数字形式存在,因此它们的解释通常很复杂。0至22kHz频段至今还是一个神秘而探索不足的领域。其中存在着各种由地球产生的内外部自然信号,以及各种人类电台所传输的脉冲。不幸的是,频谱图中存在市电频率(50Hz或60Hz),由此产生的干扰和噪声,通常会构成一个需要克服的小障碍。正是因此,这类研究倾向于在远离人居中心、电气干扰强度较小的空旷乡村进行。在获得一些经验后,就可以创建一个丰富的WAV格式的接收信号数据库,还可以标记进行录制的日期和无线电频率。例如,可以将音频资料存储在CD-ROM或DVD上而进行长期存档。nEpednc

小电台

如上所述,建立自己的VLF频段收听台非常简单。如图2所示,所需的环境以及要使用的主要元器件如下:nEpednc

  • 没有电气干扰的地方
  • 天线
  • 前置放大器
  • 声卡
  • 个人电脑
  • 软件

请注意,大部分工作是由软件完成的。有些程序(甚至是免费软件版本)的质量也很高,它们也可以执行放大器和滤波器的功能。对于初始测试,可以省略前置放大器和滤波器。nEpednc

nEpednc

图2:任何人都可以做的典型的低成本收听台。nEpednc

天线

天线是任何无线电台、发射机或接收机中的主要元件。从理论上讲,考虑到所用的低频以及相关的巨大波长,需要一个巨大的天线,甚至达数百公里。对于天线,根据要执行工作的难度、要获得的结果以及房屋中可用的空间,至少可以采用三种解决方案(请参见图3):nEpednc

  • 随机电线天线
  • 环形天线
  • 铁氧体天线
  • 地球偶极子(听地球内部的声音)

nEpednc

图3:不同类型的天线。nEpednc

天线可以通过多种方式构建。电线必须使用塑料套绝缘,也可以使用漆包线。随机线天线是一种由悬挂在地面上方的电缆所组成的天线,其长度与所需的波长无关,而是根据可用空间进行调整。由于其电气特性,这种类型的天线会收集很多噪声。环形天线由一个或多个线圈组成,在受影响的频段内非常“安静”。它必须构成一个谐振电路,因此需要一个可变电容器与之并联。在本例中,其匝数必须非常高。匝数、导线直径和线圈面积决定了其电感和电阻。与随机天线不同,环形或框形天线不需要接地。对于铁氧体天线,必须将大量漆包线缠绕在铁氧体磁芯周围。天线的尺寸必须足够大。有些人使用了14km的漆包线。最后,地球偶极子用于收听直接来自我们星球的电信号。它由两个打入到地下的木桩组成并从中心馈电,电线的长度约为数百米。现在给出有关静电放电和高压的一些建议。如果用长导线(例如,长于100至200m)制作天线,则存在危险静电的可能性会增加。建议使用Pi-Greco天线调谐器降低阻抗。电线必须直接或间接连接到计算机声卡的麦克风插孔。如果静电水平很高,这种连接可能会对声卡芯片造成风险。实际上,除了阻抗外,对于那根导线,还有必要考虑静态电压。危险不仅表现为附近或天线遭到雷击,而且表现为较次的静电场强度,而干燥的空气则对此有利。静电电压会存储在天线上,而与地面一起形成一个“电容器”。因此,建议创建一个可以将这些电场释放到大地的系统。这些方法之一是通过高阻值电阻(例如大约5到10MΩ)将天线接地(见图4)。或者也可以将两个二极管反并联连接到线路输入上。nEpednc

nEpednc

图4:随机天线及其近似阻抗示例。nEpednc

前置放大器

对天线信号放大通常很有用,尤其是在露天地区进行“收听”测试时,那里的信号确实很“安静”,即实际上收到的是有效消息,而没有企业或家庭干扰需要降低。适用于VLF天线的音频易于构建。大约+15dB的增益有助于让信号以稍强的方式从天线发出。由于天线阻抗很高,因此建议使用FET前置放大器。如果使用BJT的话,鉴于其输入阻抗仅有大约1,000至4,000Ω,则会使信号大大降低。另一方面,FET的输入阻抗为8到10MΩ,内部噪声几乎为零。基本但工作良好的接线图如图5所示。它是由FET 2N3819(J1)所制成,后者可以在任何电子产品商店中轻松购买到。R1和R2电阻用于使晶体管极化,从而使漏极电压可以自由振荡而没有任何失真。22kΩ R5微调器用于确定电路的放大倍数,后者在1.5倍至4.5倍之间。nEpednc

nEpednc

图5:天线前置放大器的接线图。nEpednc

放大器的电路工作在低频,即音频部分。构建起来并不困难,可以轻松完成。图6中的曲线图显示了最大放大倍数下的输入与输出信号及其频率响应。输出信号的相位与输入相反。放大器的功耗非常低,所需电流仅约为2.7mA,因此在使用9V电池的情况下,可以独立工作约100个小时。nEpednc

nEpednc

图6:放大器的输入信号(黄色迹线)与输出信号(绿色迹线)及其频率响应。nEpednc

声卡

声卡设备用于在0到22kHz的频带范围替代无线电接收机。24kHz的限制取决于PC声卡的带宽和采样率。如果该声卡可实现高达192,000Sa/s的采样率,则可以观察到高达96kHz的信号。使用它时,必须仔细确定其放大倍数,而避免可能的互调。本文使用Tascam 2×2 USB外置声卡(如图7所示)进行实验,采样频率为96kHz。其前面板上有个开关,以供选择两种不同的输入阻抗:10kΩ和1MΩ。nEpednc

nEpednc

图7:Tascam 2×2外置声卡。nEpednc

个人电脑

PC方面没有什么特别建议:可以使用台式PC或笔记本电脑。电池电源有助于将系统与50Hz或60Hz交流电源隔离。建议安装一个非常大的硬盘,以便装下将要录制的许多WAV记录。nEpednc

软件

软件的任务是录制信号,而在监视器上呈现出来并在硬盘上生成录音文件。此收听活动有许多专用的程序,但用于本文的程序(参见图8)如下:nEpednc

  • HDSDR
  • WASP
  • SoX

nEpednc

图8:HDSDR、WASP和SoX软件。nEpednc

简而言之,HDSDR是一款面向Microsoft Windows的免费软件(SDR)程序,其典型应用是无线电收听、SWL、射电天文学和频谱分析。WASP是一款用于记录、查看和分析音轨的免费程序,也可以使用它查看频谱图。 SoX则可以读写最常见的音频文件,并可以在此过程中加入一些声音效果。所有功能只能通过SoX命令使用。它是一款非常强大的命令行音频处理工具,特别适合于快速、轻松地进行编辑以及进行批处理。它还允许以非常高的分辨率查看频谱图。nEpednc

现在,我们来听听……

在该频带中,许多信号都是由位于无线电台附近的电子设备所发射。接收到由电视、收音机、灯、继电器、电动机、洗衣机、电梯等引起的干扰是正常的。在探测软件中正确配置好音频输入后,就可以立即观察到最初的信号。必须非常注意正确选择左右音频通道(参见图9)。实际上,所使用的电缆通常是单声道的,只有一条轨道处于活动状态。nEpednc

nEpednc

图9:要执行的第一个操作是选择音频信号通道。nEpednc

许多信号仍将保持神秘,而其他信号则也可能在互联网的帮助下发现。例如,图10显示了建筑物电梯所产生的电信号,其在8kHz频段上很容易被识别。频谱图显示有五次电梯活动:nEpednc

  • 第一次持续15.4s
  • 第二次持续15.4s
  • 第三次持续19.5s
  • 第四次持续7s
  • 第五次持续11s

nEpednc

图10:频率为8kHz的电梯信号的频谱图。nEpednc

可以在整个频谱上进行其他观察。当然,许多信号都是人为产生,例如霓虹灯、电视、无线电遥控器、开关、开关电源和电灯,如图11所示。nEpednc

nEpednc

图11:频谱图中记录的一些电信号。nEpednc

地球和大气层也会发出声音,幸运的是,可以看到一些有趣的现象:nEpednc

  • 天电干扰(sferics)
  • 大气干扰(tweeks)
  • 静电干扰(static)
  • 哨声(whistlers)
  • 等等

地震前兆

还可以对地震前兆进行有趣的实验。虽然仍然没有确定的科学数据,但是在这种情况下,最好创建一个“地球偶极子”,这就对监测土壤表面电流很有用。目前,一些研究指出,可以在几小时前预测到强烈地震,但接收站必须距震中不到100km。此外,听音和录音不能在城市的家中进行,而必须在乡村进行,传感器要直接接地。nEpednc

总结

在VLF频段观察频谱图无疑是项非常有趣且神秘的活动,至少在活动的最初几天,即使在晚上,也都会让你沉浸在PC上。经验可以提高我们识别各种电信号和自然信号的敏感性。这个极低的频带中有许多信号在传播,这也说明了地面波如何能够长距离传输信息。收听和观察信号的活动还应旨在研究和发现信号所产生的来源。如果有雷雨和闪电(参见图12),请务必记住将天线与声卡间的连接断开。nEpednc

nEpednc

图12:雷雨和闪电。nEpednc

(本文授权编译自EDN姐妹网站EEWeb,原文参考链接:Reception of Radio Waves Below 22 kHz,由赵明灿编译)nEpednc

本文为《电子技术设计》2020年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里nEpednc

  • 发射用的不就是扬声器么,接收就是Mic么?
本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了