广告

三种降低开关电路中有害dv/dt瞬变的方法

2020-12-30 李中达博士,资深研发工程师,UnitedSiC公司 阅读:
本文介绍了三种将dv/dt从45V/ns降至5V/ns而不带来过长开/关延迟时间的方法:使用外部栅漏电容器、对器件增加RC缓冲电路,以及使用JFET直接驱动。

电源转换或栅极驱动开关期间所生成的高压瞬态峰值可能有很大害处。在电动机驱动应用中,dv/dt瞬变可能会破坏绕组绝缘层,从而缩短电动机寿命并影响系统稳定性。在使用硅MOSFET、IGBT和SiC MOSFET的电路中,放缓瞬态响应的常见方法是提高外部栅极电阻的值。此类器件通常具有大反向传输电容(Crss)或栅漏米勒电容(Cgd)。在降低快速开关应用的dv/dt方面,提高栅极电阻(Rg)的做法十分有效。一个使用示例是图腾柱PFC,在此用例中,高dv/dt带来了较低的开关损耗。然而,在电动机等较慢应用中,要让dv/dt介于可接受范围内(例如5~8V/ns),所需电阻值会达到千欧级别。高Rg值可能会显著延长打开和关闭延迟。HOlednc

本文重点而又全面地介绍了三种将dv/dt从45V/ns降至5V/ns而不带来过长开/关延迟时间的方法:使用外部栅漏电容器、对器件增加RC缓冲电路,以及使用JFET直接驱动。在每种情况下,都是在T0247-4L封装中采用了一个1,200V SiC FET,且Rdson为9mΩ,并在75A/800V下开关。在探索每种情形时,都是先使用SiC FET的SPICE模块进行模拟,然后使用双脉冲电路实验测量打开和关闭时间,从而验证模拟结果。HOlednc

使用外部Cgd电容

在此方法中,外部Cgd电容器Cgdext置于半桥配置的高侧和低侧FET的栅极与漏极之间,参见1HOlednc

HOlednc

1:带外部Cgd的栅极驱动,用于实现dv/dt控制。(来源:UnitedSiCHOlednc

对于SiC FET,Cgdext的计算值为68pF,而且在进行模拟时,电路中包含一个20nH的串联寄生电感(Lpar)。在使用分立器件而且Cgd电容器的连接位置尽可能靠近FET的真实情况下,该寄生电感可以小一些。如果使用FET模块,则电容器可能需要置于模块外,这表示寄生电感会接近20nH。HOlednc

HOlednc

2:使用68pF的外部Cgd电容器和33ΩRg。左边为关闭期间的Ids(蓝色)、Vgs(橙色)和Vds(绿色)值,实线为实验测量值,虚线为SPICE模拟值。右边为打开期间的值。请注意,本文全文都使用了上述追踪色约定。(来源:UnitedSiCHOlednc

2说明了外部Cgd电容器的SPICE模拟结果和实验结果。因为在开关期间,Ids相对较低,估计为0.54A,所以外部电容器可以容许20nH寄生电感。当使用68pF电容器且Rg介于10Ω至33Ω之间时,根据测量和计算,此方法的dv/dt介于25V/ns至5V/ns之间。参见3HOlednc

HOlednc

3:使用68pF外部电容器时,在实验和SPICE模块模拟情况下,依Rg而定的dv/dt图。(来源:UnitedSiCHOlednc

结果表明,当使用FET模块,将Cgd置于电路板上,且接受一定的寄生电感时,适合使用这种方法来降低dv/dt。HOlednc

跨各FET使用RC缓冲电路

另一种控制dv/dt的方法是跨高侧和低侧FET的漏极和源极连接一个RC缓冲电路。参见4HOlednc

HOlednc

4:跨高侧和低侧FET并联的缓冲电路的示意图。(来源:UnitedSiCHOlednc

在这个示例中,如同外部栅漏电容器一样,电路中添加了一个20nH寄生电感,它与电容器(Csnubber)和电阻(Rsnubber)串联。当使用分立FET时,RC元件可以尽量靠近FET,理想的情况是直接与引脚连接,届时,寄生电感可以达到最小值。实验缓冲电路采用了一个5.6nF的电容器和一个0.5Ω电阻。SPICE模拟和实验结果均表明,这种方法可以将dv/dt从50V/ns降低至5V/ns。参见56HOlednc

HOlednc

5:跨各FET的漏源使用RC缓冲电路。实验值以实线表示,SPICE模拟值以虚线表示。该测试在75A/800V栅极驱动下采用5.6nF电容器和0.5Ω电阻执行。左边为关闭波形,右边为打开波形。(来源:UnitedSiCHOlednc

HOlednc

6:使用RC缓冲电路时,实验值和模拟值的dv/dt图。(来源:UnitedSiCHOlednc

由于电容值较低,增加缓冲电路带来的开关损耗非常小,在10kHz开关频率下仅仅约2W。相对较高的模拟寄生电感值(20nH)表明,RC缓冲电路的布置可能位于FET模块外,它可将dv/dt降低90%。HOlednc

JFET直接驱动法

最后一种降低dv/dt的方法是使用直接驱动的JFET布置,参见7。在这种电路中,启动时即打开Si MOS器件,且JFET栅极电压介于-15V至0V之间。HOlednc

HOlednc

7:直接驱动的JFET布置。(来源:UnitedSiCHOlednc

这需要PWM栅极驱动信号和启用信号,但是要维持常关状态。高侧JFET栅极电压为-15V,以保证在开关瞬态期间,它为关闭状态。同样,使用实验设置进行测量,并用SPICE模块进行电路模拟。结果请参见89。由于SiC JFET的Crss(Cgd)大,一个4.7Ω的小Rg就足以将dv/dt降低至5V/ns。HOlednc

HOlednc

8:使用JFET直接驱动法。实验值以实线表示,SPICE模拟值以虚线表示。左侧为关闭波形,右侧为打开波形。采用75A/800V电路,Rg4.7Ω。(来源:UnitedSiCHOlednc

HOlednc

9:采用JFET直接驱动法的dv/dt图,显示了实验波形和SPICE波形。(来源:UnitedSiCHOlednc

HOlednc

1:三种dv/dt降低法的SPICE模拟性能摘要。(来源:UnitedSiCHOlednc

结论

表1重点介绍了在75A/800V电路中降低dv/dt的三种不同方法的SPICE模拟预测值摘要。在三种方法中,JFET直接驱动法的能耗最低。不过,直接驱动法需要-15V驱动信号和启用信号,增加了元件数和电路复杂性。外部Cgd电容器法和RC缓冲电路法的开关损耗略高,但是不需要到JFET栅极的通路。如使用分立FET,则这两种方法都可以在电路板上轻松实现。标准UnitedSiC FET不提供到JFET栅极的通路,但是采用TO247-4L封装的新双栅极产品已经在开发中。这种方法还适合与添加了JFET栅极引脚的模块配合使用。在所有情况下,SPICE模拟中都计入了20nH寄生电感的影响,结果证明,一定量的电感不会影响dv/dt的降低。HOlednc

RC缓冲电路法的突出特点是无法分别控制打开和关闭dv/dt,参见1。然而,由于Rgon和Rgoff电阻分离,Cgd法和JFET直接驱动法可以分别控制这二者。HOlednc

本文展示了三种显著降低dv/dt的方法。鉴于UnitedSiC FET的低导电损耗和短路条件下的稳健特性,采用UnitedSiC FET能让这三种方法成为电动机驱动开发中高效且可靠的选择。HOlednc

(原文链接:3 methods to minimize harmful dV/dt transients in switching circuits,由赵明灿编译)HOlednc

本文为《电子技术设计》2020年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里HOlednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • DC/DC转换器功率降额规范中的挑战和替代方法 当今电子系统正在将更多的功能集成到更小尺寸中,但功能增多使功耗也会增加。因此,为了应对这一趋势,提供系统电压轨的DC/DC转换器必须以更小的封装实现更高的功率,即具有更高的“功率密度”。虽然目前的转换器设计可以具有非常高效率,但仍必须消散巨大热量以将关键组件保持在其最高额定温度以下。
  • “中国IC设计成就奖”提名产品简介:SLMi33x优势 国内首款带DESAT保护功能并兼容光耦驱动的IGBT/SiC隔离驱动器,5kVrms隔离电压和高达10kV的隔离浪涌电压,CMTI超过100kV/us
  • “中国IC设计成就奖”提名产品简介:智能终端高清显示驱 新相开发的智能终端高清显示驱动芯片NV305X,采用零电容集成技术、色彩增强技术、图像压缩技术、集成MIPI、SPI、LVDS三种接口,可以同时支持LCD和IGZO两种面板类型,国内自主研发的高速、低成本,市场竞争力强的高清显示驱动芯片。
  • “中国IC设计成就奖”提名产品简介:IVCR1401 35V 4A Si IVCR1401是一款4A单通道高速智能栅极驱动器,能够高效,安全地驱动SiC MOSFET和IGBT, 对比传统的栅极驱动,8引脚设计更简洁,使用更方便,能大大节约开发时间成本。
  • “中国IC设计成就奖”提名产品简介:显示触控一体化驱动 集创北方研发的显示触控一体化驱动芯片(TDDI)突破了CDMA抗干扰技术、驱动控制与触控侦测分时复用全驱动技术、减光罩、低功耗等前沿技术,形成了TDDI特有的显示横纹 (Hline)解决方案
  • “中国IC设计成就奖”提名产品简介:艾为触觉反馈驱动AW AW86224是一款具有F0检测与追踪,内置SRAM波形空间,低功耗、小尺寸的常压线性马达驱动IC
  • “中国IC设计成就奖”提名产品简介:新能源汽车用功率器 比亚迪半导体BF1181是一款电隔离单通道栅级驱动芯片,可兼容并驱动1200V IGBT&SiC功率器件。其互补的输入信号满足5V的信号输入,可直接与微控制器相连。其输出驱动峰值电流高达±8A,满足4500Vus 60s脉冲绝缘要求,适应-40℃~125℃环境运行温度范围。BF1181同时具有优异的动态性能和工作稳定性,并集成了多种功能,如故障报警、源密勒钳位、去饱和保护、主次级欠压保护等,同时集成模拟电平检测功能,可用于实现温度或电压的检测,并提高芯片的通用性,进一步简化系统设计并确保系统更安全,可应用于EV/HEV电源模块、工业电机控制驱动、工业电源、太阳能逆变器等领域。
  • “中国IC设计成就奖”提名产品简介:碳化硅肖特基二极管 碳化硅肖特基功率二极管在开关电源电路中的应用,更好的让电路工作在高频状态,减小电路中电感等元件体积重量,由于碳化硅肖特基二极管优良的耐温性能和低损耗特性,让电路中热沉的体积重量得到改善,便于优化电路的热设计,与此同时,应用了SOD123封装形式的该款器件,为功率二极管小型化提出了解决方案,更好的贴合对器件小型化和产品功率密度改善有要求的客户需求。该产品可应用于高频ACF,小功率GaN适配器,驱动部分自举电路,高频DC/DC电路等应用场合。G51XT碳化硅肖特基二极管已进入市场,有良好的市场反馈。
  • “中国IC设计成就奖”提名产品简介:屏蔽栅金属氧化场效 捷捷微电 (上海) 科技有限公司已推出的 N 沟道 100V 含自有先进平台 JSFET 系列中的 JMSH1001ATL ,采用了经 AEQ-101 验证、具超优热导性能的 PowerJE10x12 (TOLL) 创新型封装。
  • “中国IC设计成就奖”提名产品简介:高可靠性隔离式双通 纳芯微NSi6602-Q1是国内首款车规级高压隔离半桥驱动芯片,该芯片集高隔离耐压、高可靠性、高集成度、低延时、灵活封装配置等特性于一体,可应用在车载电源OBC/DCDC、车载电驱、充电桩、光伏储能、数字电源等泛能源重点发展领域。
  • “中国IC设计成就奖”提名产品简介:超高耐压贴片SJ-MOS 维安面向全球市场,在800V及以上超高压产品进行了大量的技术投入,经过近多年的超高压SJ-MOSFET产品研发积累,已开发出国内非常领先的工艺技术,可以将小封装,高耐压导通电阻做到非常低水平。给客户提供高功率密度的800V及900V以上耐压产品。此举填补国内空白,打破了进口品牌垄断的局面。降低对国外产品依存度。维安1000V超结工艺产品技术利用电荷平衡原理实现高耐压的低导通电阻的特性。相比VD-MOSFET 结构工艺产品,SJ-MOSFET有更好的更小封装和成本优势。目前市场使用1000V耐压MOSFET,多以TO247, TO-3P甚至TO-268超大封装。维安1000V器件WMO05N100C2,使用TO-252/DPAK贴片封装,内阻低至3.5Ω,相比同规格VDMOSFET 6-7Ω 下降1倍。目前在工业控制,中低压配电等380VAC输入场景得到广泛应用。
  • “中国IC设计成就奖”提名产品简介:英诺赛科氮化镓器件 1. 高频、高功率密度;2. 高边同步整流自供电,不需要辅助绕组,设计简洁;3. 无反向恢复电荷,效率更高;4. 更利于合封集成
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了