广告

智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车

2020-11-03 Pierre Delatte 阅读:
当前,新型快速开关的碳化硅(SiC)功率晶体管主要以分立器件或裸芯片的形式被广泛供应,SiC器件的一系列特性,如高阻断电压、低导通电阻、高开关速度和耐高温性能,使系统工程师能够在电机驱动控制器和电池充电器的尺寸、重量控制和效率提升等方面取得显著进展,同时推动SiC器件的价格持续下降。然而,在大功率应用中采用SiC还存在一些重要的制约因素,包括经过良好优化的功率模块的可获得性,还有设计高可靠门级驱动的学习曲线。智能功率模块(IPM)通过提供高度集成、即插即用的解决方案,可以加速产品上市并节省工程资源,从而能够有效地应对上述两项挑战。

当前,新型快速开关的碳化硅(SiC)功率晶体管主要以分立器件或裸芯片的形式被广泛供应,SiC器件的一系列特性,如高阻断电压、低导通电阻、高开关速度和耐高温性能,使系统工程师能够在电机驱动控制器和电池充电器的尺寸、重量控制和效率提升等方面取得显著进展,同时推动SiC器件的价格持续下降。然而,在大功率应用中采用SiC还存在一些重要的制约因素,包括经过良好优化的功率模块的可获得性,还有设计高可靠门级驱动的学习曲线。智能功率模块(IPM)通过提供高度集成、即插即用的解决方案,可以加速产品上市并节省工程资源,从而能够有效地应对上述两项挑战。Q0Aednc

作者:Pierre Delatte ,CISSOID首席技术官Q0Aednc

本文讨论了在电动汽车应用的功率转换器设计中选择CISSOID三相全桥1200V SiC MOSFET智能功率模块(IPM)体系所带来的益处,尤其表现在该体系是一个可扩展的平台系列。该体系利用了低内耗技术,提供了一种已整合的解决方案,即IPM;IPM由门极驱动电路和三相全桥水冷式碳化硅功率模块组成,两者的配合已经过优化和协调。本文不仅介绍了IPM的电气和散热特性,还讨论了IPM如何实现SiC器件优势的充分利用,及其中最为关键的因素,即使门极驱动器设计及SiC 功率电路驱动安全、可靠地实现。Q0Aednc

Q0Aednc

图1 CXT-PLA3SA12450AA三相全桥1200V/450A SiC智能功率模块IPMQ0Aednc

凭借低内耗和增强的热稳定性实现更高的功率密度Q0Aednc

CXT-PLA3SA12450AA是CISSOID三相全桥1200V SiC智能功率模块(IPM)体系中的一员,该体系包括了额定电流300A到600A的多个产品。这款三相全桥IPM具有较低导通损耗(Ron仅为3.25mΩ)、较低开关损耗,在600V/300A时开启和关断能量分别为7.8mJ和8mJ(见表1)。相比最先进的IGBT功率模块,同等工况下的开关损耗降低了至少三分之二。CXT-PLA3SA12450AA通过一个轻量化的铝碳化硅(AlSiC)针翅底板进行水冷,结到流体的热阻(Rjl)为0.15°C/W。CXT-PLA3SA12450AA的额定结温高达175°C,门栅极驱动电路可以在高达125°C的环境中运行。该IPM能够承受高达3600V的隔离电压(已经过50Hz、1分钟的耐压测试)。Q0Aednc

1  CXT-PLA3SA12450AA三相1200V/450A SiC MOSFET智能功率模块的主要特性Q0Aednc

参数Q0Aednc

测试条件Q0Aednc

典型值Q0Aednc

最大值Q0Aednc

漏源电压VdsQ0Aednc

 Q0Aednc

 Q0Aednc

1200VQ0Aednc

连续漏极电流IdQ0Aednc

VGS =15V,TC=25°C,Tj<175°CQ0Aednc

 Q0Aednc

450AQ0Aednc

VGS =15V,TC=90°C,Tj<175°CQ0Aednc

 Q0Aednc

330AQ0Aednc

静态导通电阻Q0Aednc

VGS =15V,ID=300A,Tj=25°CQ0Aednc

3.25mOhmsQ0Aednc

4mOhmsQ0Aednc

VGS =15V,ID=300A,Tj=175°CQ0Aednc

5.25mOhmsQ0Aednc

 Q0Aednc

开关损耗(导通)EonQ0Aednc

VDS=600V;VGS= -3/15V;Q0Aednc

IDS = 300A;L = 50µHQ0Aednc

7.8mJQ0Aednc

 Q0Aednc

开关损耗(关断)EoffQ0Aednc

8mJQ0Aednc

 Q0Aednc

隔离电压 VisoQ0Aednc

50HZ、1分钟的交流耐压测试,底板到电源引脚之间Q0Aednc

 Q0Aednc

3600VACQ0Aednc

热阻(结-流体)RjlQ0Aednc

每个开关位置都测试,流量:10L/min;50%乙二醇,50%水,流入端温度75°CQ0Aednc

0.15°C/WQ0Aednc

 Q0Aednc

热阻(结-外壳)RjcQ0Aednc

每个开关位置都测试Q0Aednc

0.13°C/WQ0Aednc

 Q0Aednc

工作结温 TjQ0Aednc

 Q0Aednc

 Q0Aednc

175°CQ0Aednc

底板尺寸Q0Aednc

 Q0Aednc

104mm(宽)Q0Aednc

154mm(长)Q0Aednc

 Q0Aednc

重量Q0Aednc

 Q0Aednc

580gQ0Aednc

 Q0Aednc

三维模型和可信赖的散热特性使快速地实现功率转换器设计成为可能Q0Aednc

CXT-PLA3SA12450AA的一大优势,即门级驱动和功率部分(含有AlSiC针翅水冷底板)高度集成。该特点使得IPM与电驱总成的其他部分,如直流电容、冷却系统可以快速结合,如图2所示。CISSOID提供了各个部件的精确的3D参考设计,客户的系统设计人员由此作为起点,可在极短的时间内实现目标系统设计。Q0Aednc

IPM充分利用了SiC功率器件的低导通和低开关损耗特性,并与门级驱动进行了系统级的协调以获得整体性能的最佳优化,在提供最优性能的同时,也有效地降低了散热系统的空间占用,并提高了功率转换器的效率。Q0Aednc

A picture containing electronics, circuitDescription automatically generatedQ0Aednc

2  CXT-PLA3SA12450AADC电容和水冷的集成Q0Aednc

在Rjl(结到流体热阻)为 0.15°C/W,流速为10L/min(50%乙二醇,50%水),入口水温75°C的条件下,可以计算出最大连续漏极电流允许值与外壳温度之间的关系(基于最高结温时的导通电阻和最大工作结温来计算),如图3所示。Q0Aednc

Q0Aednc

3  CXT-PLA3SA12450AA最大连续漏极电流允许值与外壳温度之间的关系Q0Aednc

最大连续漏极电流(允许值)有助于理解和比较功率模块的额定电流;品质因数(Figure of Merit ,FoM)则揭示了相电流均值与开关频率的关系,如图4所示。该曲线是针对总线电压600V、外壳温度90°C、结温175°C和占空比为50%的情况计算的。FoM 曲线对于了解模块的适用性更为有用。由于CXT-PLA3SA12450AA的可扩展性,图4还推断出了1200V/600A 模块的安全工作范围(虚线所示)。Q0Aednc

Q0Aednc

4  CXT-PLA3SA12450AA的相电流(Arms)与开关频率的关系Q0Aednc

(测试条件:VDC= 600VTc = 90°CTj <175°CD = 50%),以及对未来的1200V/600A 模块(CXT-PLA3SA12600AA,正在开发中)进行推断Q0Aednc

此外,门极驱动器还包括了直流侧电压监测功能,采用了更为紧凑的变压器模块;最后,CXT-PLA3SA12450AA的安全规范符合2级污染度要求的爬电距离。Q0Aednc

鲁棒的SiC门极驱动器使实现快速开关和低损耗成为可能Q0Aednc

CXT-PLA3SA12450AA的三相全桥门极驱动器设计,充分利用了CISSOID在单相SiC门极驱动器上所积累的经验,例如,CISSOID分别针对62mm 1200V/300A 和快速开关 XM3 1200V/450A SiC功率模块设计的CMT-TIT8243 [1,2]和CMT-TIT0697 [3]单相栅极驱动器(见图5)。Q0Aednc

和CMT-TIT8243、CMT-TIT0697一样,CXT-PLA3SA12450AA的最高工作环境温度也为 125°C,所有元件均经过了精心选择和尺寸确认,以保证在此额定温度下运行。该IPM还凭借 CISSOID的高温门极驱动器芯片组[4,5]以及低寄生电容(典型值为10pF)的电源变压器设计,使得高 dv/dt 和高温度环境下的共模电流降到最低点。Q0Aednc

Q0Aednc

用于快速开关XM3 1200V/450A SiC MOSFET功率模块的CMT-TIT0697门极驱动器板Q0Aednc

CXT-PLA3SA12450AA 栅极驱动器仍有余量来支持功率模块的可扩展性。该模块的总门极电荷为 910nC。当开关频率为 25KHz 时,平均门极电流为 22.75mA。这远远低于板载隔离DC-DC 电源的最大电流能力95mA。因此,无需修改门极驱动器板,就可以提高功率模块的电流能力和门极充电。使用多个并联的门极电阻,实际的最大 dv/dt 值可达10~20 KV/µs 。门极驱动电路的设计可以抵抗高达 50KV/µs 的 dv/dt,从而在 dv/dt可靠性方面提供了足够的余量。Q0Aednc

门极驱动器的保护功能提高了系统的功能安全性Q0Aednc

门极驱动器的保护功能对于确保功率模块安全运行至关重要,当驱动快速开关的SiC功率部件时更是如此。CXT-PLA3SA12450AA门极驱动电路可以提供如下保护功能:Q0Aednc

欠压锁定(UVLO):CXT-PLA3SA12450AA门极驱动器会同时监测初级和次级电压,并在低于编程电压时报告故障。Q0Aednc

防重叠:避免同时导通上臂和下臂,以防止半桥短路 。Q0Aednc

防止次级短路:隔离型DC-DC 电源逐个周期的电流限制功能,可以防止门极驱动器发生任何短路(例如栅极 - 源极短路)。Q0Aednc

毛刺滤波器 抑制输入PWM信号的毛刺,这些毛刺很可能是由共模电流引起的。Q0Aednc

有源米勒钳位(AMC):在关断后建立起负的门极电阻旁路,以保护功率MOSFET不受寄生导通的影响。Q0Aednc

去饱和检测:导通时,在消隐时间之后检查功率通道的漏源电压是否高于阈值。Q0Aednc

软关断:在出现故障的情况下,可以缓慢关闭功率通道,以最大程度地降低因高 di/dt引起的过冲。Q0Aednc

结论Q0Aednc

CISSOID的SiC智能功率模块体系,为系统设计人员提供了一种优化的解决方案,可以极大地加速他们的设计工作。驱动和水冷模块的集成从一开始就提供了可信赖的电气和热特性,从而缩短了有效使用全新技术通常所需要的漫长学习曲线。CISSOID全新的、可扩展的IPM体系,将为电动汽车应用中SiC技术的探索者提供强大的技术支持。Q0Aednc

参考文献Q0Aednc

[1] CMT-TIT8243: 1200V High Temperature (125°C) Half-Bridge SiC MOSFET Gate Driver Datasheet. http://www.cissoid.com/files/files/products/titan/CMT-TIT8243.pdf.Q0Aednc

[2] P. Delatte. A High Temperature Gate Driver for Half Bridge SiC MOSFET 62mm Power Modules. Bodo’s Power Systems, p54, September 2019.Q0Aednc

[3] CMT-TIT0697: 1200V High Temperature (125°C) Half-Bridge SiC MOSFET Gate Driver Datasheet. http://www.cissoid.com/files/files/products/titan/CMT-TIT0697.pdf.Q0Aednc

[4] High Temperature Gate Driver Primary Side IC Datasheet: DC-DC Controller & Isolated Signal Transceivers. http://www.cissoid.com/files/files/products/titan/CMT-HADES2P-High-temperature-Isolated-Gate-driver-Primary-side.pdf.Q0Aednc

[5] High Temperature Gate Driver -Secondary Side IC Datasheet: Driver & Protection Functions. http://www.cissoid.com/files/files/products/titan/CMT-HADES2S-High-temperature-Gate-Driver-Secondary-side.pdf.Q0Aednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 福特将在2025年前将投入290亿美元研发电动车自动驾驶 据报道,传统汽车行业正在电动车、自动驾驶领域大举投资,应对特斯拉带来的巨大挑战。周四,美国福特汽车公司宣布,在2025年前,公司将会在电动车和自动驾驶领域投资290亿美元。据悉,福特是在当天公布去年四季度财报时宣布了上述的投资计划。
  • 国豪华车厂商DS发布全新车型DS 4 据外媒报道,法国豪华汽车品牌DS Automobiles最初是作为雪铁龙的子品牌创立的,不过在2015年被剥离成为独立的实体,其全新的二代DS 4取代了2010款首次推出的雪铁龙车型。每一款DS
  • 里程更远,导线更少,电动汽车实现电池管理系统无线化 随着下一代电池管理系统(BMS)实现无线化,电动汽车内部错综复杂的通信布线将减少,从而有助于延长行驶里程并提高可靠性。
  • 视觉系统方案的有效整合,可使自动化生产线效率极大提高 本文介绍的三个应用案例展示了业界上先进的机器视觉软件和及其图像预处理技术如何促使2D和3D视觉检测的性能成倍提升。
  • 汽车芯片缺货,国产CAN收发器迎替代机遇 芯片生产周期通常在10几到20几周不等,下单后不可能马上生产,车载芯片的产能更是要提前12个月做规划。2020年初在疫情影响下,很多汽车企业对车载芯片需求判断失误,导致芯片订货不足,晶圆厂也将部分原本属于车载芯片的产能转成了消费类芯片,多重因素的叠加直接导致了缺货潮。以CAN收发器为例,国内市场长期被国外品牌所占据……
  • 继谷歌、甲骨文等之后,IBM中国研究院为什么关闭?下一个 1月23日,有微博爆料:IBM中国研究院正式关闭。此事成了今日热点,继谷歌、诺基亚、摩托罗拉、甲骨文等国际科技巨头接连关闭(大部分)退出中国市场后,IBM也要退出中国市场吗?IBM中国研究院关闭的原因是什么?很多人都在欢呼,“外企信仰”要终结了,国外科技不如国内了......,那么,IBM等的退出对中国科技是利还是弊?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了