广告

开发基于碳化硅(SiC)的25kW快速直流充电桩(第一部分):电动车应用

2021-09-03 15:04:34 安森美(onsemi) 阅读:
本系列文章将谈论直流充电器的开发过程,在每一部分探讨不同的主题。将聚焦所面临的关键挑战、权衡和妥协,并展示如何从头设计、构建和验证这样的系统。在第一部分中,将描述快速电动车充电器的结构,并定义其关键电气规格。

快速直流充电市场正在蓬勃发展。伴随着电动车(EV)采用的加速,对快速充电基础设施的需求也在增加。预测未来五年的年复合增长率(CAGR)为20%至30%。如果您是在电力电子领域工作的一名应用、产品或设计工程师,迟早会参与到这新的充电系统的设计中。LLDednc

这里可能会出现一个基本问题,特别是如果您是第一次面临这样的挑战。我应该如何开始,从哪里开始?关键的设计考虑因素是什么,我应该如何解决它们?LLDednc

安森美的EMEA系统工程团队正准备帮助设计人员解决这样的挑战,我们将演示设计和开发基于SiC功率集成模块(PIM)的25千瓦快速直流充电桩。LLDednc

开发这种类型的大功率电池充电器需要多样化的技能。位于斯洛伐克Piestany的安森美电源系统科团队,领导该设计的项目协调,并承担所有与硬件开发有关的活动。电源系统应用经理Karol Rendek和高级电源系统应用工程师Stefan Kosterec担此重任。他们两人都是经验丰富的电力电子设计工程师,精通高功率转换应用。LLDednc

位于慕尼黑的电机和电源转换控制团队进行固件和软件开发,该团队由Daniel Pruna任主管,Dionisis Voglitsis和Rachit Kumar任应用工程师。该团队在电源转换器和电机驱动的控制和算法开发方面拥有多年的经验。LLDednc

在这系列文章中,我们将谈谈直流充电器的开发过程,在每一部分探讨不同的主题。我们将聚焦所面临的关键挑战、权衡和妥协,并展示如何从头设计、构建和验证这样的系统。我们知道设计之路并非一帆风顺,向前迈进的最佳方式是快速启动、运行和迭代。在第一部分中,我们将描述快速电动车充电器的结构,并定义其关键电气规格。LLDednc

快速直流充电器——我们在构建什么?

在电动车生态系统中,直流充电桩提供"快速"和"超快"充电能力,与较慢的交流充电器形成对比。从本质上讲,电动车充电器将来自电网的交流电转换为适合输送到电动车电池的直流电。直流充电的电源转换是在电动车外("车外")进行的,然后输送到车辆,功率等级从低于50千瓦到大于350千瓦(甚至更高的等级也在开发中)。LLDednc

更高功率的直流充电桩通常以模块化的方式构建,15至75千瓦(及以上)的功率块堆叠在一个柜子里(图1)。一般来说,直流充电桩的输出电压从150V到1000V,涵盖常见的400V和800V电动车电池电压。充电桩可针对较高或较低的电压端进行优化。LLDednc

这种电源模块的结构如下:前端一个带有功率因数校正(PFC)的AC-DC升压转换器,然后是一个DC-DC级,提供在电网和负载(电动车的电池)之间的隔离,并调节输出端电压和电流(还是图1)。该系统也可能是双向的(特别是在低功率时),因此拓扑结构和设计应考虑到这一点。LLDednc

LLDednc

图1:快速直流充电桩电源模块概览LLDednc

安森美的团队正在开发一种具有双向能力的25千瓦直流充电器。该系统应涵盖广泛的输出电压范围,能够为400V和800V电池的电动车充电,经优化还可用于更高的电压等级。输入电压的额定值为欧盟400伏和美国480伏的三相电网。功率级应在500V至1000V电压范围内提供25千瓦。低于500V时,输出电流将被限制在50A,降低功率,与直流充电标准如联合充电系统(Combined Charging System,简称CCS)或CHAdeMO(图2)的电流曲线相一致。LLDednc

图2:25kW直流充电桩功率级功率和电流曲线。低于500V时电流限值在50ALLDednc

关于通信端口,该板将为外部接口(电源块、充电器系统控制器、车辆、服务和维护之间)提供隔离的CAN、USB和UART基础架构。总的来说,设计将遵循IEC-61851-1和IEC-61851-23标准中关于电动车充电的准则。下表概述了系统要求。LLDednc

表:25kW快速直流充电桩要求LLDednc

LLDednc

开发流程

我们的团队遵循电源转换硬件开发流程的逻辑。这项工作从定义实际的直流充电桩功率级开始。这是基于应用的要求,我们的案例总结在表格中。这些符合市场的需求,并遵循IEC-68515准则。这些要求有助于团队了解他们需要努力的目标。LLDednc

第一个可行性研究有助于验证最初的要求和假设。这些将被整合为系统设计的一部分,包括(在本项目的范围内)硬件、软件、热管理和机械设计、原型和验证。所有基本的系统变量和解决方案的大多数临界妥协和权衡都发生在可行性研究期间。LLDednc

这些任务和子设计是通过多次迭代进行的,其中一个部分的输出和假设被反馈到另一个部分。其中两个主要的设计活动提供了重要的产出,以推进工作:LLDednc

  • 用SPICE模型进行电源仿真
  • 使用MATLAB和Simulink进行控制仿真

电源仿真对于确认工作电压和电流、损耗、冷却要求以及功率和无源元件的选择等方面的假设至关重要。一旦实施计划准备就绪,就要进行包括功率参数在内的控制仿真,以确认采用该电源设计可以有效地执行控制回路。LLDednc

在通过电源和控制仿真证实设计后,就获批绘制原理图、布局PCB和制造原型。一旦有了电路板,硬件启动,就可进行功能测试和系统评定。LLDednc

这是我们将在本系列中讲解的设计过程的简化摘要。从头开始开发一个25千瓦的电动车直流充电桩需要的不仅仅是这些,当我们解决在这过程中遇到的挑战和问题时,将会获得最有价值的收获。LLDednc

将探讨什么?

在本系列文章的后续部分,我们将进一步专注于一些设计和验证阶段。将解决以下主题:LLDednc

  • 解决方案概述
  • 三相PFC整流级
  • 双有源全桥DC-DC级
  • 控制算法、调制方案和反馈
  • 用于SiC电源模块的门极驱动系统
  • 用于800V总线的辅助电源单元
  • 热管理

关于作者

Karol Rendek是安森美系统工程中心的应用经理。Karol于2020年加入安森美。此前9年,他在嵌入式系统、D类放大器、机车车辆控制和安全系统以及工业电动车充电器的开发中担任硬件工程师、系统工程师和项目经理。Karol持有布拉迪斯拉发的斯洛伐克科技大学微电子学硕士和博士学位。他在攻读博士期间花了三年时间专研氮化镓(GaN)高电子迁移率晶体管(HEMT)的低频噪声分析。LLDednc

LLDednc

Stefan Kosterec是安森美系统工程中心的应用工程师。Stefan于2013年加入安森美。此前,他在西门子PSE工作了8年,担任ASIC/FPGA设计师,开发针对不同领域的数字解决方案,其中包括通信、电源转换和电机控制。他还在Vacuumschmelze担任过两年的电感元件设计师,并在艾默生能源系统公司担任过产品完整性工程师,负责电信电源系统的验证。Stefan持有斯洛伐克特尔纳瓦技术大学材料科学和技术学院的应用信息学硕士学位。LLDednc

LLDednc

Dionisis Voglitsis是安森美的应用工程师。他负责电机控制和充电应用的控制算法和控制方案的开发和实施。在2019年加入安森美前,Dionisis曾担任多个欧洲和国家研究项目的研究员,同时他也曾加入飞利浦的先进技术中心。Dionisis是其领域内30多篇研究和技术论文的作者和共同作者,发表在高质量的期刊(IEEE Transactions和Journals)上,这些被200多份论文引用。他还是"Energies" MDPI期刊的客座编辑。他持有能源工程的工程学位,荷兰代尔夫特理工大学的无线电力传输硕士学位,以及希腊德谟克利特大学(DUTH)的电气工程博士学位。LLDednc

LLDednc

Rachit Kumar是安森美系统工程中心的高级应用工程师。Rachit于2020年加入安森美。Rachit从事嵌入式软件开发超过10年,专注于电机控制算法。在加入安森美前,Rachit在Nanotec电子公司从事低功率BLDC和步进电机控制器的嵌入式系统开发。Rachit持有德国Ravensburg-Weingarten应用科学大学的机电一体化硕士学位。LLDednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了