广告

如何将CoolMOS应用于连续导通模式的图腾柱功率因数校正电路

2021-10-22 21:30:02 英飞凌科技应用工程师林献崇、洪士恒 阅读:
为了实现在图腾柱PFC使用常见的开关器件,本文介绍预充电电路的解决方案。 相较采用宽禁带半导体,此方案的功率半导体器件较普遍且容易取得,提供给使用者做为设计参考。

前言

功率因素校正为将电源的输入电流塑形为正弦波并与电源电压同步,最大化地从电源汲取实际功率。 在完美的 PFC 电路中,输入电压与电流之间为纯电阻关系,无任何输入电流谐波。 目前,升压拓扑是 PFC 最常见的拓扑。在效率和功率密度的表现上,必须要走向无桥型,才能进一步减少器件使用,减少功率器件数量与导通路径上的损耗。 在其中,图腾柱功率因素校正电路(totem-pole PFC)已证明为成功的拓扑结构,其控制法亦趋于成熟。 8D8ednc

一般而言,超级结MOSFET(Super junction MOSFET)在图腾柱的应用,尤其是针对连续导通模式,效能将会大打折扣。原因是在控制能量的高频桥臂在切换过程中产生的硬切损耗与寄生二极管的反向恢复损耗。为克服此应用问题,目前在市面上采用的对策多为采用宽禁带半导体。 8D8ednc

为了实现在图腾柱PFC使用常见的开关器件,本文介绍预充电电路的解决方案。 相较采用宽禁带半导体,此方案的功率半导体器件较普遍且容易取得,提供给使用者做为设计参考。8D8ednc

基本工作原理

在介绍新方法之前,首先介绍超级结半导体开关切换瞬时特性。因为半导体设计趋势仍在降低开关损耗以提升产品功率密度,即降低在开关切换过程中V-I 交越的损耗,常见半导体厂商的做法为将开关等效输出电容(Coss)特性设计为非线性曲线:在低压时,Coss值较大,随着电压提升,在接近于中压时电容值急剧降低,如下图左Coss特性曲线(本文皆以英飞凌CoolMOS为范例),如此可减少V-I交越的损耗面积。 随着制程技术演进,Coss变化曲线变压更为急剧,这在新老代的MOSFET可明显比较出性能差异。如下图右为比较新老代MOSFET的Coss特性与开关损耗的差异。 8D8ednc

8D8ednc

图1:Coss曲线和开关损耗比较8D8ednc

针对半桥的应用,两颗特性相同MOSFET 桥接后的出电容特性如下图2。 在半桥应用普遍重视零电压切换,因为MOSFET总输出电容的储能损耗(Qoss)与反向恢复特性(Qrr)将大幅增加半桥架构在硬切换时的损耗。在半桥中如图所示的等效输出电容最大值则发生在任一臂开关为0V的状态,随着任一桥臂电压提升至20~30V左右,等效输出容值则急剧降低,此特性将用于接下来将介绍的补偿电路。 8D8ednc

8D8ednc

图2:半桥CoolMOS Coss电压变化曲线8D8ednc

下图3为预充电电路 的范例。在该拓朴中,二极管模式开关的硬换向发生于每个开关切换周期。在有的半桥结构中,考虑在电感中累积的能量,在Q1关闭之后Q2通常会工作在软开关(Soft Switching)状态。然而,当Q2关断时,由于电感电流连续的特性,使得此电流流过其本体二极管。 当Q1导通时,则会发生Q2体二极管电流的硬换向。 8D8ednc

8D8ednc

图3:针对图腾柱架构高频半桥预充电动作示意图8D8ednc

通过加入的预充电电路,在二极管模式下工作的MOSFET便可以在通道开启前预充至特定的电压,例如24V。 如此便可大幅的降低 Qoss及Qrr相关的损耗。 因此可以大幅提高CoolMOS在CCM Totem Pole PFC的整体性能。 8D8ednc

建议的预充电解决方案需要为半桥中的每个功率开关器件配备额外的器件:高压肖特基二极管(图中的D1和D2)和一个低压的MOSFET(图中的Q3和Q4)。另外还需要两个电压源来驱动半桥和低压MOSFET(13V)以及MOSFET漏-源端电压(24V)。 此外,驱动器输入端包含的Rx-Cx和Ry-Cy滤波器为PWM信号设定正确的时序,不需额外的控制信号。 8D8ednc

8D8ednc

图4:图腾柱架构预充电电路时序控制图8D8ednc

主要波形如图4所示。在t0之前的状态下,电感器通过Q1充电,一旦Q1关闭,电感电流就会流过Q2,首先通过其本体二极管,然后在Q2开启后流过器件通道。 因此,在Totem pole PFC中,Q2开启时工作在零电压(ZVS)开关。 在t0时,PWM A 信号置低,经过一定的延迟时间后(Ry与Cy的延迟) ,Q2的栅源极电压信号(VGS)也在t1置低。 在半桥的死区(Dead time)时间内(t1到t2),电感电流通过Q2的体二极管续流。在t2之前,Q2的VDS被钳位到地并且所有自举电容器(CHS_P除外)都被驱动电压和24V电压充电(图五a与b)。 然后在死区时间(Dead Time)后,PWM B 置高,通过Cx、Rx 产生Q4的短暂栅极电压。因此,预充电的Q4会在t2开启(图五c),预充电电流流经Q4到D2到Q2的网络中,这种预充电流的的幅度必须高于流经Q2体二极管的续流电流。 在预充电流结束时(t3),Q2的漏-源极电压被预充电至24V。 8D8ednc

如图4所示,预充电电流波形有两个峰值脉冲:第一个在t2和t3之间,与Q2的Coss有关。 第二个在t3和t4之间幅度较小,是由预充电回路的杂散电感谐振形成。 Q1被延迟到t开启,此时Q2的Coss已经被24V所耗尽了。如图五d所示,当Q1导通时,用于Q3的自举电容从Q1的自举电容充电。从图四可以看出,在Q1或Q2开启时,预充电的Q4 或Q3都尚未关闭,如此为保证Q1或Q2开启瞬间的低损耗。如果此脉冲过短,则Q2在开启瞬间发生硬换向的可能性很高。 如果其在多个连续事件期间发生,则会产生破坏性的结果。 8D8ednc

当PWM B信号置低时,与之前类似,Q1会延迟到t5才关闭(Ry与Cy的延时)。在通道关闭后,Q1的Coss会充电到400V 而Q2的Coss将放电到0V,从而使Q2产生零电压开关(ZVS)。PFC 应用中的开关到二极管切换就是这种情况。在这种情况下,高压侧开关(CHS_DP到Q3到D1)的预充电电路不会对基于MOSFET的半桥电路工作造成任何影响。 8D8ednc

当负载或电感电流足够高时,会使Coss充分被充放电,进而达到零电压开关(ZVS)的目的。但是,如果电感电流不足以对半桥等效的Coss进行充放电时,则会发生硬开关。可以参考图4中t5后的虚线。在这种状况下,施加到Q3的脉冲电压通过D1将Q1的Coss充电至24V。一旦Q2导通,其漏源极电压将再次下降到接近于零,实现比较平滑的开关到寄生二极管的切换。 8D8ednc

8D8ednc

图5:预充电电路增加预充电电路的硬换向瞬态工作示意图8D8ednc

测试结果

本章节展示了3300W无桥CCM Totem pole PFC评估板的规格与性能。此评估板实现了本文中介绍的预充电电路并使用600 V CoolMOS  CFD7来实现CCM Totem pole PFC,其寄生二极管特性为低反向恢复电荷,在极端条件下硬开关不易损坏。 如图六为完整电路图,高频部分并联使用CoolMOS  IPT60R090CFD7,预充电电路使用BSZ440N10S3。 8D8ednc

图7 为评估板稳态和动态条件下的性能和规格。转换器工作在65kHz开关频率,仅适用于高压单电压输入。 最低交流输入电压为176Vac rms。8D8ednc

8D8ednc

图6:评估板电路图8D8ednc

Test Conditions Specification
Efficiency test 230Vrms, 50Hz/60Hz ηpk≈99% at 1650 W (50% Load)
Current THD 230Vrms, 50Hz/60Hz THDi less than 10% from 10% load
Power factor 230Vrms, 50Hz/60Hz PF more than 0.95 from 20% load
Rated DC voltage   400V
Steady-state Vout ripple 230Vrms, 50Hz/60Hz, 100% load ∆Vout less than 20Vpk-pk
Inrush current  230Vrms, 50Hz/60Hz, measured on the first AC cycle Iin_Peak less than 30A

图7:性能规格表8D8ednc

下图为稳态效率实测结果,显示了在不同交流电压下的效率测量值,此测量结果包含控制器及风扇的基本损耗(6W aux power)。 8D8ednc

8D8ednc

图8:稳态效率测试结果8D8ednc

下图为Totem Pole PFC 的主要工作波型,其中还包含了预充电电路的波形。 由波形可见预充电电流只出现在相应的交流周期中,对相反的交流周期没有影响。 8D8ednc

8D8ednc

图9:稳态输入电压、电感电流与预充电电流波形8D8ednc

图10和图11分别显示了0A 和23A电感电流的漏-源电压波形(满载稳态操作下),包含必要的预充电电流波形。 测量的波形与上一章节所示的电压电流预充电波形(图四)吻合。 8D8ednc

8D8ednc

图10: 空载的预充电电流瞬时波形8D8ednc

8D8ednc

图11:满载的预充电电流瞬时波形8D8ednc

结论

本文介绍了以MOSFET实现无桥连续导通模式图腾柱PFC的解决方案,该方案在1U的外型尺寸和80W/inch3的功率密度下实现了99%的峰值效率。此评估版采用英飞凌600V  CoolMOS  CFD7系列MOSFET和预充电电路。该预充电电路通过低压电压源提供电荷降低Qoss和Qrr的损耗,在前文已介绍预充电的工作原理供读者知悉。CoolMOS CFD7和预充电电路的组合,以及为低频桥臂选用的CoolMOS™  S7,以高性价比电路展现高性能效率水平。 此外,尽管预充电电路增加了半导体器件数量,但辅助电路皆可使用贴片型封装,因此可以实现高功率密度的电源设计。 8D8ednc

参考文献

1. Evaluation board EVAL_3K3W_TP_PFC_SIC 8D8ednc

2. Design guide MOSFET CoolMOS™ C7 600V 8D8ednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了