广告

如何最佳计算数模转换器的信号链误差预算

2021-11-15 14:37:55 Thomas Brand,现场应用工程师,ADI公司 阅读:
本文介绍了一种精密数模转换器(DAC)的信号链误差预算计算工具。将描述与DAC连接的元件的单项误差影响。最后,将逐步演示如何使用该工具来识别和纠正这些问题。

电信号链有多种形式。它们可以由不同的电气元件组成,包括传感器、执行器、放大器、模数转换器(ADC)、数模转换器(DAC),甚至微控制器。整个信号链的准确性起着决定性的作用。为了提高准确性,首先必须识别并尽量减小每个信号链中的各个误差。由于信号链的复杂性,这种分析将会是一项艰巨的任务。本文介绍了一种精密数模转换器(DAC)的信号链误差预算计算工具。将描述与DAC连接的元件的单项误差影响。最后,将逐步演示如何使用该工具来识别和纠正这些问题。Yd9ednc

精密数模转换器(DAC)误差预算计算器的计算精准,易于使用,可以帮助开发人员为特定应用选择最合适的元件。由于数模转换器(DAC)通常不会单独出现在信号链中,而是连接到基准电压和运算放大器(例如作为参考缓冲器),因此必须重视和总结这些额外的元件以及它们的各个误差。为了更好地理解这个概念,我们首先看看主要元件的单项误差影响,如图1所示。Yd9ednc

Yd9ednc

1.数模转换器(DAC)信号链的主要元件Yd9ednc

基准电压有四个主要的误差影响。第一个与初始精度(初始误差)有关,表现在25℃(指定温度)的生产测试中测量的输出电压不稳定。此外,还有与温度系数相关的误差(温度系数误差)、负载调节误差和线路调节误差。初始精度和温度系数误差对总误差影响最大。Yd9ednc

在运算放大器中,输入失调电压误差和电阻的阻值误差影响最大。输入失调电压误差是指为了获得零电压输出而在输入端强行施加的很小的电压差。增益误差是用于设置闭环增益的相应电阻的阻值误差引起的。其他误差由偏置电流、电源抑制比(PSRR)、开环增益、输入失调电流、CMRR失调和输入失调电压漂移引起。Yd9ednc

对于数模转换器(DAC)本身,数据表中给出了各种类型的误差,例如积分非线性(INL)误差,它与理想输出电压和给定输入代码测量的实际输出电压之差有关。其他误差类型有增益误差、失调误差和增益温度系数误差。有时将它们组合在一起形成总不可调整误差(TUE)。TUE和所有测量输出DAC误差有关,即INL、失调和增益误差,以及在电源电压和温度范围内的输出漂移。Yd9ednc

由于不同的误差源通常不相关,计算信号链中总误差的最精确方法是统计平方公差法:Yd9ednc

Yd9ednc

收集各个元件的误差通常是一项繁琐的任务,现在我们可以使用误差预算计算器来简化这项工作,得到同样精确的计算结果。Yd9ednc

Yd9ednc

2.ADI误差预算计算器中误差影响的表示Yd9ednc

使用精密数模转换器(DAC)误差预算计算器的步骤

首先,使用误差预算计算器,从三种数模转换器(DAC)类型中进行选择:电压输出DAC、乘法DAC和4 mA ~ 20 mA电流源DAC。接下来,设置误差计算所需的温度范围和电源电压纹波,后者对PSRR误差将起决定性的作用。输入这些值后,计算器将生成一个图表,显示信号链中每个元件的各个误差影响,如图2所示。Yd9ednc

这个示例中的总误差主要受基准电压的影响。通过使用更精确的参考模块可以改进这一信号链。Yd9ednc

数模转换器(DAC)的集成电阻负责内部反相放大器的比较,从而提高精度,对数模转换器(DAC)的总误差起决定性的作用。在没有集成电阻或内部反相放大器的数模转换器(DAC)中,这些参数可以单独设定,如图2所示。Yd9ednc

误差预算计算器可靠且易于使用,使创建精密数模转换器(DAC)信号链和快速评估设计权衡变得更容易。Yd9ednc

作者简介

Thomas Brand于2015年加入德国慕尼黑的ADI公司,当时他还在攻读硕士。毕业后,他参加了ADI公司的培训生项目。2017年,他成为一名现场应用工程师。Thomas为中欧的大型工业客户提供支持,并专注于工业以太网领域。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。联系方式:thomas.brand@analog.comYd9ednc

原文标题:How to Best Calculate the Digital-to-Analog Converter Signal Chain Error BudgetYd9ednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • USB供电的5.8GHz RF LNA接收器,带输出功率保护功能 图1所示的电路来自高性能RF接收器系统,具有+23dB增益,优化之后,支持采用5.8GHz中心频率。其输入未经滤波,保持2dB噪声系数,但输出端配有带通滤波器,会衰减带外干扰。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
  • 采用晶振控制的斜坡发生器 本项目源于需要为HP 8620C射频扫频振荡器产生线性晶体控制斜坡信号。它的灵感来自之前发布的斜坡发生器设计。这种设计存在两个问题:它使用了非标准的16.384MHz晶体振荡器;其斜坡的下降/返回/消隐时间为零。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 给变压器烙铁DIY一个温度“稳定器” 多年来,我一直对变压器烙铁头的没有温度控制而感到恼火。可能所有使用变压器烙铁的用户都注意到,使用这种烙铁进行焊接需要大量练习,以免因温度过高而造成损失。问题在于无法控制烙铁头温度,我决定稍微DIY一下。
  • 高清音频的重大突破:优化TWS耳机的音频传输和播放 随着对高清(HD)音频的兴趣不断攀升,对具有高级功能的高清TWS耳机的巨大需求正达到顶峰。本文介绍了高清音乐传输背后的技术,以及音频设计人员如何满足日益增长的需求。
  • 拆解:苹果AirTag追踪器 有人猜到这次要拆解什么产品吗?当然是苹果的AirTag追踪设备。既然之前都已经拆解了Tile Mate,当然也只有对AirTag进行同样的检查才算公平,对吧?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了