广告

电动车的电路保护、功率控制如何设计才更安全?

2021-12-17 09:53:41 ames Colby,Littelfuse业务发展资深经理 阅读:
在对抗污染和减缓气候变化方面,两轮和三轮电动车(EV)的发展与四轮和更大EV的发展一样重要。与汽车和卡车相比,大量采用燃烧技术的两轮和三轮车辆对于燃烧控制较少,并且产生大量污染。两轮和三轮EV的设计人员面临着与四轮和更高等级EV设计人员相同的困难挑战,包括最大化两次充电之间的里程数、车辆高可靠性和车辆安全性。

在对抗污染和减缓气候变化方面,两轮和三轮电动车(EV)的发展与四轮和更大EV的发展一样重要。与汽车和卡车相比,大量采用燃烧技术的两轮和三轮车辆对于燃烧控制较少,并且产生大量污染。两轮和三轮EV的设计人员面临着与四轮和更高等级EV设计人员相同的困难挑战,包括最大化两次充电之间的里程数、车辆高可靠性和车辆安全性。egLednc

市场要求电池两次充电之间行走更多里程数,这就需要降低电路的功耗以实现最佳效率。除此之外,市场对高可靠性和高安全性的要求,是要保证设计人员开发的电路能对雷电和静电放电(ESD)等瞬变讯号具备强大抵抗力。egLednc

图1提供了两轮摩托车的子系统以及增强可靠性和效率的保护、控制和感测组件的图标。本文将重点介绍如何使两轮和三轮EV中的三个子系统变得可靠和高效。这三个子系统是电池管理系统(BMS)、引擎控制单元(ECU)和车载充电器。重点将放在保护和感测组件还有控制组件上,用于保护这些电路不会因超载和瞬变而造成损坏,以及最大限度地减少功耗和延长电池寿命。egLednc

egLednc

 egLednc

图 1:两轮电动车子系统及其电路保护、控制和感测组件。egLednc

电池管理系统(BMS)

BMS管理电池输出并保持各个电池单元的平衡。BMS还可监控和控制充电器的电源并保护电池。典型的BMS包括电池监控和管理电路、电池单元保护电路和通讯接口。图 2显示了BMS的方块图。egLednc

egLednc

图 2:电池管理系统方块图显示了推荐的保护、控制和感测组件所在的电路egLednc

电池断开装置

高能源电池组可能包含电池断开装置。这个基本系统提供预先充电连接、连接和断开负载、熔断和电流检测。如果检测到超载情况,该电路将打开并将电池组与负载隔离。由于该电路控制马达拥有高功率,建议该电路使用能够承受来自马达和马达启动器的高浪涌电流的延时保险丝来进行熔断。确保保险丝在动作时具有高电阻,以便完全中断超载电流。选择指定开路电阻至少为1MΩ的保险丝。所选保险丝应为符合ISO 8820或 AEC-Q规范的UL或CSA组件。具有这些特性的保险丝可提供高达500A的额定电流;而且,预先核准的组件装置加快了标准认证的速度,并降低了这方面的成本。egLednc

建议使用瞬态电压抑制器(TVS)二极管来抑制瞬态电压,例如抛负载、ESD和雷电,以免损坏下游敏感电子电路。TVS 二极管可以:egLednc

安全地吸收通过空气或直接通过人体接触到的高达30kV的ESD冲击egLednc

安全地吸收高达 600W的峰值脉冲功率(如果需要,可提供更高功率的版本)egLednc

在不到1ns的时间内对瞬变做出快速响应egLednc

TVS二极管的版本可以是双向的,也可以是单向的。如果二极管可能会遇到电池反接的情况,请使用双向二极管。对于汽车级组件,请选择通过AEC-Q101分离式半导体标准认证的AEC-Q合格TVS二极管。egLednc

设计人员应使用单颗电池的保险丝(在感应在线)来保护锂离子电池组,以防止出现短路故障的电池或一组电池损坏电池组。请选择小型快速保险丝来保护单颗电池。选择符合以下条件的保险丝:egLednc

具有至少50A的电流中断额定值;egLednc

可以承受突波电流,但如果电池电流超过保险丝标称额定值的250%,则会在几秒钟内断开;egLednc

可以在-55℃到+150℃之间的环境中运行,并且符合AEC-Q规范;egLednc

采用表面黏着封装,占用最少的印刷电路板(PCB)空间。egLednc

要在正常运行期间、充电期间或检测到问题时将电池组与负载断开,请考虑使用高电流/高电压直流(DC)接触器继电器。这些类型的继电器在额定电压为900V时可承载高达250A的电流。可考虑使用IP67 密封、充气版本的继电器来降低电弧风险。寻求在脉宽调变模式下运行来节省能源的装置。egLednc

电池保护模块

电池保护模块可防止电池组过热。对于该模块,使用与电池热耦合的负温度系数(NTC)传感器来监控电池温度。建议使用玻璃封装的密封NTC传感器。即使在恶劣的环境条件下,这也能提供长期的稳定性和可靠性。egLednc

I/O通讯接口

I/O通讯接口将电池状态传输至主控制处理器。对于该电路模块,根据ISO 10605,有必要使用TVS二极管数组保护接口数据线免受ESD和其他电压瞬变的影响。请物色符合以下规格的产品:egLednc

符合IEC 61000-4-2的要求,并提供至少25 kV的ESD保护,以防遭受空击和人员直接接触;egLednc

提供低箝位电压,或具有低动态电阻值;egLednc

消耗电流低,例如在正常工作条件下低于 100nA;egLednc

具备AEC-Q101 认证文件。egLednc

图3显示了一种类型的TVS二极管数组。在这种情况下,一个节省空间的封装可以保护两条数据线(例如,用于CAN总线)。egLednc

egLednc

图3:两端口的TVS二极管数组,用于保护数据线免受任一极性电压瞬变破坏。egLednc

电池交换电路

电池交换电路模块在主电池组和辅助电池组之间切换。拥有两个电池组可延长两次充电之间的行驶距离。请使用具有高开路电阻的开关,以避免两个电池组之间出现意外电流。簧片开关可以满足此一要求。簧片开关的绝缘电阻约为1012Ω。请物色触点额定值高达200V、开关电流额定值至少为 0.5A、功率处理能力至少为10W的簧片开关。egLednc

漏电流电路

高价位的摩托车和滑板车可监控流向车辆底盘的漏电流。如果漏电流超过预定值时,继电器将闭合,向电池管理电路发送讯号。为此我们考虑使用光耦合固态继电器。固态继电器应具备:egLednc

低于10Ω的低导通电阻;egLednc

低于50nA的低漏电流;egLednc

电压和电流额定值分别高达100V和150mA;egLednc

至少1500Vrms 的输入-输出隔离。egLednc

当漏电流在限制范围内时,这将确保可靠的继电器把控制讯号与电池管理电路块充分隔离。有了这些少量的保护、控制和感测组件,电池管理系统将成为电动车内一个强大而可靠的子系统。egLednc

引擎控制单元

引擎控制单元(ECU)是车辆的主要处理和控制单元。ECU控制马达驱动电路并处理数据,例如电池组的状态,以便驾驶员了解电池组的状况。图4显示了构成ECU的电路。egLednc

egLednc

图 4:引擎控制单元/马达驱动方块图显示了推荐的保护、控制和感测组件所在的电路。egLednc

辅助电源控制单元

辅助电源电路充当处理器和控制开关FET及马达动作的其他电路组件的低压电源。考虑使用高额定电流保险丝来保护该系统免受超载电流的影响,并使用快速保险丝来保护单一电路免受超载影响。 考虑使用为电池管理系统中的电池断开装置建议的相同保险丝。作为用于组件级保护的单次使用保险丝的替代方案,请考虑使用聚合物正温度系数(PPTC)可恢复式保险丝,该保险丝在故障清除后复位至正常操作。当组件或用户错误被认为是潜在的临时性故障的主要来源时,它们特别有用。请物色具有以下特性的PPTC自恢复保险丝:egLednc

额定电流高达15 A,额定电压约为60VDC;egLednc

表面黏着封装有助于节省空间并可自动插入PCB。egLednc

使用 TVS二极管保护辅助电源单元免受ESD和电压瞬变的影响。考虑使用推荐的TVS二极管来保护 BMS电池断开装置。egLednc

反极性电桥保护

反极性电桥保护电路可保护马达驱动电路免受电池错误连接到车辆电路的影响。对于这种反极性保护,可以考虑使用萧特基二极管(它也可以用于DC-DC转换器电路中的整流)。萧特基二极管提供低正向压降以减少能量损失并允许转换器以更高频率运行来提高转换器效率,除此之外,更高频率的操作允许使用更小的感应组件,从而节省成本和PCB空间。由于该电路中使用了开关组件(IGBT、MOSFET),它很容易受到高温故障的影响。当FET进入电阻性短路状态时,这种故障就会显现出来。为防止出现这种情况,建议在出现不受控制的过热情况时使用热保护器来断开电路与电源的连接。请选择可中断高达500 A的组件。egLednc

马达驱动电路

马达驱动电路包含驱动马达的功率输出电路。对于此电路,请考虑使用MOSFET或用于功率驱动的MOSFET模块。请寻求符合以下条件的MOSFET:egLednc

低 Rds(on)可最大限度地减少开关功率损耗;egLednc

高热效率和快速 dv/dt 额定值可有效驱动马达负载。egLednc

使用闸极驱动器有效地控制 MOSFET。考虑用于控制高侧与低侧 MOSFET 输出配置的双输出组件。 除此之外,请寻求具有闩锁保护和超过MOSFET dv/dt时间的快速上升/下降时间的驱动器。可提供上升和下降时间低于10ns的驱动器。egLednc

请务必使用数字温度指示器来监控马达驱动电路是否过热。图5显示其电阻与温度曲线的例子。该组件装置是一种聚合物温度指示器,当达到临界温度时,其电阻可以改变108倍。高电阻有效地为监控电路建立了一个积极的指示,然后监控电路可以关闭马达的电流。当温度下降到临界关断温度以下时,该组件将重置,马达可以恢复供电。或者,您可以选择类似推荐用于BMS电池保护模块的密封玻璃传感器的NTC温度传感器。egLednc

egLednc

图5:热保护器和范例组件的电阻–温度曲线。egLednc

 马达

关键驱动零件「马达」,应防止过热、转速过高和转子被死锁。两种感测组件可以解决这些情况。与推荐用于监控马达驱动电路的相同的 NTC温度传感器可以监控马达温度,霍尔传感器和开关可以监控马达速度和转子位置。霍尔传感器具有可以输出电压或电流的版本,因此您可以选择最适合您的设计的输出。物色开关寿命长的霍尔传感器和开关,以获得最大的可靠性。霍尔传感器开关最高可实现200亿次的开关操作。egLednc

I/O通讯接口

I/O通讯接口使 ECU 能够与车辆感测和控制电路以及电池组状态线连接。按照BMS中I/O通讯接口的建议,使用TVS二极管数组保护接口的数据线免受 ESD和其他电气瞬变的影响。egLednc

ECU是电动车中最为关键的系统,因此确保该系统得到适当保护极为重要。egLednc

车载充电器

车载充电器将交流(AC)电源转换为DC电源,为电池组充电提供充电电压和电流。图6显示包含车载充电器的电路以及推荐用于各个电路的保护、控制和感测组件。egLednc

egLednc

图 6:车载充电器方块图显示推荐的保护、控制和感测组件所在电路。egLednc

输入保护、整流器和滤波器

由于该电路与AC电源线相连,因此该电路会受到AC电源在线可能出现的过电流条件和电压瞬变的影响。请使用延迟保险丝中断电流超载,并确保保险丝的额定电压超过线路电压。因为保险丝连接到AC线路,所以建议选择 UL或CSA组件认可的保险丝。为了满足车规质量,请考虑选择符合ISO 8820或通过AEC认证的保险丝。egLednc

AC线路瞬变可能有很大的能量,应该在电路的输入端安装能够安全地吸收这些瞬变能量的组件。对于在电压瞬变过程中需要尽量降低箝位电压的电路,可以考虑将金属氧化物压敏电阻(MOV)和保护闸流体串联起来。MOV版本可以吸收高达10kA的峰值电流,工作电压超过800VDC。它们还可以满足AEC-Q200规范对被动组件的质量要求。双向保护闸流体可以吸收高达3kA的浪涌电流,响应时间为毫微秒。请使用符合AEC-Q101规范的闸流体版本。与单独使用MOV相比,MOV和保护闸流体的串联可以允许较低的箝位电压。egLednc

功率因子控制电路

功率因子控制(PFC)电路减少输入电压和从电源线汲取的电流之间的相位差,从而提高充电器的效率。这样可最大限度提高提供给设备的实际功率,并降低可能具有更高峰值电流消耗的视在功率。对于该电路,建议使用 Rds(on) 值低于500mΩ的低Rds(on) MOSFET,以最大限度地减少开关和传导损耗。除此之外,使用推荐用于BMS和ECU电路模块的高压版本TVS二极管,保护该电路免受自感应电压瞬变(主动箝位)的影响。egLednc

高频转换器和箝位电路

高频变换器和箝位电路将AC正弦输入转换为高频方波因子。使用MOSFET建立方波讯号,可最大限度提高电路效率。使用推荐用于PFC电路的TVS二极管来保护此电路。egLednc

输出整流和滤波电路

输出整流和滤波电路为电池组产生DC充电电压和电流。选择一个快速恢复的高频开关整流二极管,以最大限度地减少电路中的开关损耗。选择结温高于150℃的整流二极管以获得最大的可靠性。egLednc

输出DC保护电路

输出DC保护电路将充电电压和电流连接到电池组。使用保险丝来防止电路因电池组、下游组件或系统短路而超载。使用与输入保护电路推荐的相同类型保险丝。egLednc

I/O通讯接口

与BMS和ECU一样,使用与前面描述的系统中的接口相同类型的TVS二极管数组来保护I/O通讯接口数据端口免受瞬变的影响。瞬态保护将有助于防止处理器因瞬态超载故障而发生灾难性故障。egLednc

输入保护和滤波器

输入保护和滤波器提供对充电器输出的控制。该电路应使用TVS二极管进行保护。请选择具有以下功能的TVS二极管:egLednc

30kV额定值,对于无论是通过空气还是直接人体接触产生的ESD冲击egLednc

高达1kA的瞬态浪涌保护egLednc

寻找符合AEC-Q101规范的组件。当 PCB 空间变得拥挤时,可寻求节省空间的表面黏着封装版本。egLednc

两轮和三轮电动车的安全标准

请注意电动两轮和三轮车辆必须遵守的各国和国际安全标准。表1列出了这些标准。凭借在设计过程的早期解决标准要求来节省开发时间。确保设计定义中包含目标市场的安全标准。egLednc

egLednc

表 1:适用于两轮和三轮电动车的各国和国际安全标准。egLednc

在设计受保护和高效电路方面的价值

使用推荐的保护、控制和感测组件,您可以实现市场要求的可靠性。您的设计将能够耐受过电流情况和瞬态超载。您可以利用制造商的应用专业知识来实施这些保护措施并节省设计和开发时间。应用工程师们可以协助选择组件并提供有关遵守适用安全标准的指导。egLednc

责编:DemiegLednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • IC制造生命周期关键阶段之安全性入门 本文包括两部分,我们主要探讨芯片供应商和OEM之间的相互关系,以及他们为何必须携手合作以完成各个制造阶段的漏洞保护。第一部分指出了IC制造生命周期每个阶段中存在的威胁,并说明了如何解决这些威胁。第二部分着重说明了OEM所特有的安全风险,并指出了最终产品制造商和芯片供应商如何承担各自的责任。
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • 如何评估3D音频解决方案 沉浸式3D/空间音频,与XR/360视频相结合,给您带来宛若置身于茂密深林的视听体验——飘落的细枝在脚下嘎吱作响,一头鹿向东原跑去,当您的目光追着一只红衣凤头鸟而远去时,您能听见它扇动翅膀的声音。精准的头部跟踪有助于提供逼真的用户体验(UX),了解评估解决方案的关键因素,可以帮助您在不断发展的行业中找到方向。
  • 金线、银线,不如“无线”?——WiSA无线音频 我们知道,高端无线音频主要是用5GHz,而中低端普遍采用2.4GHz。这方面主要在于频谱的利用和技术原因,2.4G覆盖距离比5G长,但缺点是频宽窄。而WiSA的DS模块却能够做到“2.4GHz 比别人家的5GHz 更好,比自家的5GHz要差”。原因是什么?怎样解决无线音频的痛点?
  • 四个问题帮你确定是否需要采用有源电缆(AEC)解决方案 围绕信道长度、损耗预算和功耗最小化手段等重要问题,每个企业给出的答案都不一样。有如此多的因素推动着最终布线决策,因此在研究你的数据中心选择时,究竟需要了解些什么?
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 适合工业应用的鲁棒SPI/I2C通信 状态监控、工厂自动化、楼宇自动化和结构监控等应用要求外设位于远程位置,通常远离控制器。系统设计人员传统上利用中继器或具有更高驱动强度的驱动器来扩展这些接口,其代价是整体成本和功耗增加。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了