广告

充分挖掘SiC FET的性能

2022-02-15 13:20:13 UnitedSiC公司 阅读:
充分挖掘SiC FET的性能
功率转换器的性能通常归结到效率和成本上。实际示例证明,在模拟工具的支持下,SiC FET技术能兼顾这两点。

性能是一个主观术语,它可以用许多你喜欢的方式衡量,但是在功率转换界,它归结为两个相互依赖的主要值,即效率和成本。现在,作为半导体开关材料,硅在导电和动态损耗性能方面已经到达了极限,这已经是一个常识了,因此越来越多的人考虑采用碳化硅和氮化镓宽带隙技术来实现更好的性能。这两种材料具有更好的介质击穿特性,从而可以打造更薄、掺杂更重、导通电阻更低的阻挡层,同时,更小的晶粒体积还可降低器件电容,从而降低动态损耗。与硅相比,宽带隙器件损耗更低,但是实际上,宽带隙器件也有某些方面较差,如SiC MOSFET和GaN HEMT晶体管通常需要严格控制栅极驱动条件才能实现最佳性能。这些器件与硅开关相比还有一系列不同之处,因而带来了困难,如SiC MOSFE栅极阈值的可变性和迟滞,以及GaN缺少雪崩额定值。pFmednc

SiC FET接近理想开关

实际开关接近理想开关,却不一定有巨大的进步。如果简单的竖直沟槽SiC JFET与硅MOSFET结合,您可以获得更低的标准化整体损耗、一个简单的非临界栅极驱动和一个有高雪崩额定值和短路额定值的可靠部件。这个器件就是SiC FET共源共栅,如1(右)所示,与左侧的SiC MOSFET形成对比。在SiC FET中,SiC MOSFET中的沟道电阻Rchannel被低压硅MOSFET的电阻所取代,后者的反转层电子迁移率要好得多,损耗也因此更低。SiC FET的晶粒面积相对较小,尤其是在与一同封装的堆叠在顶部的Si MOSFET配合使用时。pFmednc

pFmednc

1SiC MOSFET(左)和SiC FET(右)结构对比 pFmednc

在现实中,对比性能的最好方法是对比“性能表征”(FoM),它们结合了给定晶粒体积下在不同应用中的导电损耗和开关损耗,晶粒体积对于每个晶圆的产量和随之变化的成本很重要。图2显示的是选择,它对比了可用的650V SiC MOSFET与UnitedSiC制造的750V。RDS(ON) xA,即单位面积的导通电阻是一个关键性能表征,值低表明晶粒面积较小,给定损耗性能下每个晶圆的产量较高。另一个性能表征RDS(ON)xEOSS,即导通电阻与输出开关能量的乘积,它是表示导电损耗和开关损耗之间的权衡的特性,在硬开关应用中很重要。性能表征RDS(ON)xCOSS (tr)将导通电阻与跟时间有关的输出电容关联起来,表明在高频软开关电路中的相对效率性能。还有一个重要比较是整体二极管的前向压降。在中,VF是Si MOSFET体二极管压降与第三象限JFET电阻性压降之和,值约为1到1.5V。对于SiC MOSFET,该参数值可能超过4V,在电流通过整体二极管换向的应用中,这会导致开关死区时间内有显著导电损耗。图中所示的导通电阻相关性能表征是25°C和125°C下的值,表明在真实条件下SiC FET的性能非常好。pFmednc

pFmednc

2SiC FETSiC MOSFET的性能表征比较pFmednc

3.6kW SiC FET图腾柱PFC演示工具实现99.3%的效率峰值

也许最能证明SiC FET性能的情况是在典型应用中,即在图腾柱PFC级中。长久以来,该电路都是交流线路整流与功率因数校正结合后的潜在高效解决方案,但是大功率和硅MOSFET技术下的硬开关才是不可接受的动态损耗的产生原因。SiC FET可解决这个问题,且UnitedSiC提供的3.6kW演示工具表明在230V交流电下会达到99.3%的效率峰值,这使得80+钛金系统效率额定值更容易实现(3)。在电路的“快速”支路的两个18欧SiC FET的任何一个中,都只有8W损耗,而硅MOSFET用作“慢”支路中的同步交流线路整流器。它们可以被硅二极管取代,让解决方案的成本更低,同时仍实现99%以上的效率。该图还表明了使用并联的60欧SiC FET实现的结果,或每个快速支路开关使用一个18欧SiC FET实现的结果。pFmednc

pFmednc

3使用SiC FET3.6kW TPPFC级实现的效率pFmednc

模拟工具让SiC FET选择变得简单

UnitedSiC的“FET-Jet”计算器让选择最佳SiC FET部件来实现最佳性能变得简单。它是免费使用的在线工具,允许用户从一系列整流器、逆变器和隔离和非隔离直流转直流拓扑中选择他们计划使用的设计。然后用户输入运行规格,从UnitedSiC的系列SiC FET和二极管中选择器件。该工具可以立即计算效率、组件损耗以及导电损耗占比和开关损耗占比、结温上升等。并联器件的效果会得到支持,还可以规定实际散热器性能。pFmednc

模拟结果和实际示例表明,SiC FET可以显著提升功率转换器的性能。文章开始处就说过,成本也是一个因素,当考虑系统效果时,SiC FET也能胜出,它的较高效率和较快开关速度可以降低散热和磁性元件的体积与成本,从而降低系统平衡和拥有成本。pFmednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 非抗辐射MOSFET能用于辐射环境吗? 最近遇到一家客户有点“不切实际”地执意要在辐射暴露的供电应用中,使用并非专为辐射环境而设计的功率MOSFET……
  • SiC衬底的生产到底难在哪里? 全球“双碳”背景下,绿色能源的普及和汽车电动化已经逐渐成为了趋势。特斯拉首次将意法半导体生产的24个SiC MOSFET功率模块引入其Model 3的主逆变器中,推动了碳化硅功率器件市场的增长。
  • 全球碳化硅 (SiC)市场专利格局分析报告 碳化硅在电动汽车 (EV) 应用中的采用正在推动碳化硅 (SiC) 功率器件市场的增长。
  • 比亚迪更新光伏逆变专属IGBT为绿色发电助力  在“碳中和”的背景下,光伏逆变器的核心IGBT功率半导体的市场需求与日俱增,比亚迪半导体发布的两款光伏逆变IGBT有哪些参数和优势呢?
  • 仅16个本科员工,却是国内功率半导体市场第二梯队?网友:怎 近日,黄山芯微电子股份有限公司(简称“芯微电子”)的招股说明书成了业内议论的话题。研发人员为88人,占比11.1%,本科学历的员工人数仅为16人,占比2.02%。却被列为国内功率半导体市场的第二梯队,即研发设计制造能力相对突出,且少数突破了功率半导体芯片技术瓶颈的公司。网友提出质疑:这个大专学历占多数的88人研发团队是如何做到的?
  • “中国IC设计成就奖”提名产品简介:PLC电力线载波通信 LD801是一款适用于12MHz以下窄带、高速或宽带中频电力线载波通信(PLC)的高性能线路驱动(功放)芯片,最大输出功率24dBm。
  • “中国IC设计成就奖”提名产品简介:碳化硅肖特基二极管 碳化硅肖特基功率二极管在开关电源电路中的应用,更好的让电路工作在高频状态,减小电路中电感等元件体积重量,由于碳化硅肖特基二极管优良的耐温性能和低损耗特性,让电路中热沉的体积重量得到改善,便于优化电路的热设计,与此同时,应用了SOD123封装形式的该款器件,为功率二极管小型化提出了解决方案,更好的贴合对器件小型化和产品功率密度改善有要求的客户需求。该产品可应用于高频ACF,小功率GaN适配器,驱动部分自举电路,高频DC/DC电路等应用场合。G51XT碳化硅肖特基二极管已进入市场,有良好的市场反馈。
  • “中国IC设计成就奖”提名产品简介:屏蔽栅金属氧化场效 捷捷微电 (上海) 科技有限公司已推出的 N 沟道 100V 含自有先进平台 JSFET 系列中的 JMSH1001ATL ,采用了经 AEQ-101 验证、具超优热导性能的 PowerJE10x12 (TOLL) 创新型封装。
  • “中国IC设计成就奖”提名产品简介:超高耐压贴片SJ-MOS 维安面向全球市场,在800V及以上超高压产品进行了大量的技术投入,经过近多年的超高压SJ-MOSFET产品研发积累,已开发出国内非常领先的工艺技术,可以将小封装,高耐压导通电阻做到非常低水平。给客户提供高功率密度的800V及900V以上耐压产品。此举填补国内空白,打破了进口品牌垄断的局面。降低对国外产品依存度。维安1000V超结工艺产品技术利用电荷平衡原理实现高耐压的低导通电阻的特性。相比VD-MOSFET 结构工艺产品,SJ-MOSFET有更好的更小封装和成本优势。目前市场使用1000V耐压MOSFET,多以TO247, TO-3P甚至TO-268超大封装。维安1000V器件WMO05N100C2,使用TO-252/DPAK贴片封装,内阻低至3.5Ω,相比同规格VDMOSFET 6-7Ω 下降1倍。目前在工业控制,中低压配电等380VAC输入场景得到广泛应用。
  • Vishay推出最新第四代600 V E系列MOSFET器件, RDS(O 超级结器件降低传导和开关损耗,提高通信、服务器和数据中心应用能效
  • 【技术大咖测试笔记系列】之十:在当今高压半导体器件上 宽带隙(WBG)器件由于物理特点,机身二极管压降较高,因此对空转时间和打开/关闭跳变的控制要求要更严格。准确的电源和测量测试对表征这些高压器件非常关键,以便能够及时制订正确的设计决策。
  • Syndion GP:赋能先进功率器件的未来 未来的特种技术需要怎样的芯片制造工艺?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了