广告

25kW SiC直流快充设计指南(第四部分):DC-DC级的设计考虑因素和仿真

2022-04-20 15:11:07 安森美(onsemi) Karol Rendek, Stefan Kosterec  阅读:
在“开发基于碳化硅的25kW快速直流充电桩”系列的这篇新文章中,我们将聚焦DC-DC双有源相移全桥(DAB-PS)零电压开关(ZVS)转换器,其简介和部分描述参见第二部分。在本部分中,我们将介绍我们的工程团队遵循的一些DC-DC级的设计过程。
XJZednc

结论和设计折衷

上述章节所介绍的仿真用于验证 DAB 转换器的初始目标,并帮助制定设计决策,尤其是涉及变压器和谐振电感的设计决策。表 6 和表 7 显示了系统最终选择的参数值。这些值将传递给磁性元件制造商,供他们开发优化的磁性元件。XJZednc

已将变压器的匝数比 n1/n2 设置为 1.2:1.0,因为此配置在整个工作范围内表现出最佳性能,在 VSEC = 800 V 时表现出高峰值效率 (99.4%),在 VSEC = 900 V 时为 99%,而在接近低端 (200 V) 和高端 (1000 V) 处则仅表现出小幅效率下降(图 3),相比其他匝数比(1.4:1.0 和 1.0:1.0)性能更好。XJZednc

对 LM 的要求则更加灵活,额定范围大约从 150 µH 到 300 µH。该值是 DAB 磁性元件设计指南中提及的多方面因素的折衷。在 IM = 20 A(及以下)时,应确保最小 L值为 150 µH,而范围高达 300 µH 则为磁性元件制造商留出了 L值的选取空间,以提供尽可能紧凑和高效的全面变压器设计。XJZednc

根据 DAB 磁性元件设计指南章节中提出的建议,选择 10 µH 作为谐振电感的估计值。XJZednc

最后不得不提的是,已提议将变压器和电感的等效串联电阻 (ESR) 值作为符合其他定义参数的最大合理估计值。不言而喻,实际磁性设计越能降低电阻值则越好。这属于磁性元件供应商可以增加价值的优化过程。XJZednc

表 6.为变压器选择的设计参数。这些用于为变压器制造商指定变压器要求。XJZednc

XJZednc

表 7.为谐振电感选择的设计参数。这些用于为变压器制造商指定电感要求。XJZednc

XJZednc

开发过程的下一步将是与磁性元件制造商分享要求,并接收磁性部件的设计建议。一旦获得了磁性元件的样品,就可以测量它们的实际参数,并使用 SPICE 模型中的改进参数运行新的仿真。在获得实际转换器硬件之前进行第二次分析,提供更准确的性能和损耗结果。XJZednc

例如,可以在仿真中添加磁芯损耗,因为磁性制造商通常会提供实际值。虽然下一篇系列文章中将讨论磁性参数,但实际测量的磁参数也将有助于增强控制模型,并有助于在拥有硬件之前推进控制算法和控制环路的开发。这有助于加速开发过程,因为使用高级模型可能会简化硬件的调试和调整工作。XJZednc

请继续关注下一篇系列文章,即第五部分,它将讨论控制算法和控制环路的实施指南。XJZednc

参考资料

1. 25kW SiC直流快充设计指南(第一部分): 有关电动车应用” by Karol Rendek and Stefan Kosterec, How2Power Today, April 2021. XJZednc

2. 25kW SiC直流快充设计指南(第二部分):方案总 by Karol Rendek and Stefan Kosterec, How2Power Today, May 2021. XJZednc

3. 25kW SiC直流快充设计指南(第三部分):PFC仿真” by Karol Rendek and Stefan Kosterec, How2Power Today, June 2021.XJZednc

4. SEC-3PH-11-OBC-EVB: 三相车载充电器 (OBC) PFC-LLC 平台XJZednc

关于作者

XJZednc

Karol Rendek是安森美系统工程中心的应用经理。Karol于2020年加入安森美。此前9年,他在嵌入式系统、D类放大器、机车车辆控制和安全系统以及工业电动车充电器的开发中担任硬件工程师、系统工程师和项目经理。Karol持有布拉迪斯拉发的斯洛伐克科技大学微电子学硕士和博士学位。他在攻读博士期间花了三年时间专研氮化镓(GaN) 高电子迁移率晶体管(HEMT)的低频噪声分析。 XJZednc

Stefan Kosterec是安森美系统工程中心的应用工程师。Stefan于2013年加入安森美。此前,他在西门子PSE工作了8年,担任ASIC/FPGA设计师,开发针对不同领域的数字解决方案,其中包括通信、电源转换和电机控制。他还在Vacuumschmelze担任过两年的电感元件设计师,并在艾默生能源系统公司担任过产品完整性工程师,负责电信电源系统的验证。Stefan持有斯洛伐克特尔纳瓦技术大学材料科学和技术学院的应用信息学硕士学位。XJZednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 意法半导体STM32U5系列MCU上新,提高物联网和嵌入式应用 Ajax Systems已使用 新STM32U5 MCU开发下一代无线安保和智能家居解决方案;新STM32U5系列MCU是首款获得NIST嵌入式随机数熵源认证的通用MCU
  • 电池管理系统创新如何提高电动汽车采用率 要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。
  • 使用SiC和GaN创建面向未来的电力电子器件 随着碳化硅(SiC)和氮化镓(GaN)等宽禁带器件的推出,电力电子技术发生了翻天覆地的变化。事实上,这些材料的特性使其特别适合在高压和高开关频率下所运行的应用,并能提供比最先进的硅基功率器件更好的效率和散热管理。
  • 如何大幅提高物联网设备的电池能效 本文探讨了如何使物联网(IoT)设备更加节能。在重点介绍毫微功耗运输模式和睡眠模式的关键作用之前,快速回顾了电池管理。 最后,提供了一种新的解决方案,与传统方法相比,它可以更好地优化电池管理的这两个方面,从而降低功耗水平和电路板空间。
  • 利用无线BMS实现智能电池生态系统解决方案 有关电池创新的新闻往往会突出新的电池封装概念和新材料,它们有朝一日可能能够比当今的锂电池技术储存更多的电量。电池的另一个部分——电池管理系统(BMS)——则往往不为人所知,但却需要跟进并以此来支持电池创新。
  • 软件定义电源让用户可控 传统上,AC/DC电源设计只能针对特定负载和线路条件进行优化。这源于在常用固定频率下的经典模拟控制和简单脉宽调制技术,这些限制通常会导致在极端工作范围内产生更高的元器件应力。
  • 小米预研固态电池技术前景诱人,能量密度突破1000Wh/L 3月1日,小米又宣布预研固态电池技术,通过将电解液替换为固态电解质,不仅能量密度突破1000Wh/L,更大幅提升低温放电性能和安全性,称“有望一举解决手机电池三大痛点”。
  • 胜过齐纳二极管的有源分流限压器 我需要用一个电路来限制某些耗散受限设备的电压。它必须将电压限制在最大1.5V,具有对称限制,能够接受2A的电流,并且在1V时漏电流小于100µA。可以用两个串联的齐纳二极管,阳极到阳极,达到目的,但稳压值为0.8V和2W耗散的齐纳二极管在市场上找不到。
  • 用于GaN HEMT的超快速分立式短路保护 GaN HEMT的保护电路必须比硅基MOSFET中使用的传统短路和过流保护方法更快。
  • 【电驱变革深探】: 从测试角度看800V超充技术下的电驱 市场调研数据显示,超过80%的用户对电动汽车的充电速度和续航里程表示不满,虽然新能源汽车市场在近几年飞速变化,但距离满足消费者心理预期的更高使用需求,尚有较大提升空间。预测数据显示,到2025年,800V SiC的市场占比将达到15%左右;不过在电动汽车全球发展提速的大趋势下,这一预测节点也许会提前到来。
  • LDO的运行困境:低裕量和最小负载 开关式DC-DC转换器可提高电源效率,有些器件的效率可超过95%,但是以增加电源噪声为代价,通常在较宽带宽范围内都存在噪声问题。低压差线性稳压器(LDO)常用于清除供电轨中的噪声,但也需要进行一些权衡考量,其功耗会增加系统的热负载。
  • Gridspertise和意法半导体20年合作新里程,赋能美国等地 意法半导体面向家庭的直接电力线通信(power line communication)通道将用于Gridspertise为美国市场开发的智能电表;赋能终端客户积极参与能源市场转型,促进分布式可再生能源整合和智能能源管理系统发展
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了