广告

从触觉手套到触觉衣,如何在VR和AR中更好实现haptic?

2016-09-28 Patrick Mannion,赵娟 阅读:
精确的传感比你想象的更难实现,更别提在指尖来重现它。这就是说,一些有趣的技术,像“超触觉”和“Shock-suit”这样的,可能会激发一些灵感。

AR和VR系统是有趣的,同时也为远程触觉技术带来创新的使用环境。受益的不仅是游戏玩家和普通消费者,也能让外科医生远程执行手术。也就是说,良好的远程触觉远远超出力反馈或微小电机产生小的震动(来自我们的手机)。 AtVednc

在AR或VR的背景下,我们有很多方法来感测用户的运动、并反馈到系统中。我们可以利用用户身上的运动传感器、或者外部照相机、或反射光束。AtVednc

连接并控制一台机器,我们需要联网手套,甚至新的Myo armband。然而,当涉及到触摸虚拟、或远程可视化对象,从而获得准确的感官反馈,让指尖感触到其形状、质地、压力反应等特点,这就需要把握我们的手指如何工作的各个基本面。AtVednc

远程医疗已经被广泛研究,但其原理也是适用于AR和VR的。AtVednc

当我们用我们的手指去探索一个物体的刚度、阻尼、质地、滞后及其他特点时,我们会紧握其表面,并用两个主要类别的传感器来收集相关的数据。第一是动觉,这是指在四肢感应到的基本几何形状和压力数据(例如位置,关节的速度和致动力)。第二类是触觉,同时使用皮肤和皮下传感器。AtVednc

在医疗系统中,远程触觉系统(RHS)包括一个远程机械手用来探索动作、一个触觉感知通道用来向操作器返回信息。动觉、触觉信息均需要被传达并显示。心理学证明,如果触觉信息缺失、那么触觉辨别能力也会显著降低。AtVednc

这当然是有道理的,因为我们需要能够高分辨率的去“感觉”我们的触摸。但是精确的传感比你想象的更难实现,更别提在指尖来重现它。这就是说,一些有趣的技术,像“超触觉”和“Shock-suit”这样的,可能会激发一些灵感。AtVednc

与此同时,研究人员开始利用一点心理学知识,来消除真实世界和感测世界之间的差距。他们推测:AtVednc

“区分触摸对象柔软度所需要的一大部分触觉信息,被包含在接触物接触面上的接触力中,或者手指在物体上增加压力时接触面的扩展率中。”AtVednc

他们称这种关系为接触面积扩展率(CASR),虽然表达不完善,这种扩展可能是一个触摸完整传感的替代者。研究人员随后开始调查以触觉数据的简化形式来传达足够信息的可能性:AtVednc

“…柔软度的分辨很让人满意,能用于实际应用。”AtVednc

为了证明了推测,该团队为压电(压阻也行)材料的每侧都涂覆了金属导电层(metallic conductive),并跨导电层放置合适的仪器来测量其电压:分别为电荷放大器或惠斯登电桥和差分放大器(图1)。AtVednc

2016092800001AtVednc

图1:研究人员发现,用相对简单的技术来获得足够的触觉信息,去控制触觉显示器或反馈机制是可行的。(在本案例中用两面都涂有金属导体的压电材料层)AtVednc

被测量信号包括两个随时间变化的模拟信号(力和接触的面积),来对应需要在时间和空间域被同时采样的随时间变化的压力的空间分布情况。经过众多学科的直接和心理实验后,研究小组证实设备能提供足够的信息来控制触觉显示。AtVednc

以下展示一些业界先驱产品:

Teslasuit:全身触觉反馈套件AtVednc

用于更具交互性的VR体验的Teslasuit是一个全身触觉外套,唯一美中不足的是,它是使用电信号刺激肌肉或皮肤表面来提供反馈。 AtVednc

2016092800002AtVednc

图2:在VR、甚至是AR中都很难完全复制人的感觉。Teslasuit是一个Kickstarter的项目,使用微型电极编织的材料编织来刺激肌肉。基本上是触电的感觉。 AtVednc

作为一个Kickstarter项目Teslasuit曾筹到一些钱,但在2月份还是取消了。也许让用户触电并不是最好的方式。AtVednc

Ocean One水下机器人AtVednc

斯坦福大学研发的Ocean One水下机器人:采取AI+触觉反馈的协同工作方式,让机器人手部能够感受到所抓取物体的重量与质感,再施加以适当力道抓取,这样就能够抓取到易碎物品了。此外还拥有平衡设计,可以让它即使在身体晃动的情况下,通过手臂调整也能保持双手的稳定。AtVednc

2016092800003AtVednc

Ocean One背面安装了计算单元、电池、推进器,能够在水下自由航行。身高5英尺,有用两只铰接机械手臂,八只推进器。 AtVednc

控制员拥有者机器人视角,就与看见自己手臂的视角很像。AtVednc

多种触觉反馈手套AtVednc

触摸虚拟现实的手部交互设备已经上市很多种类,有的加入了惯性测量单位,用足够的敏感度准确地跟踪位置,速度和运动方向;有的设置了许多小型触觉振动器,每个振动器可以独立编辑不同强度的触感压力,该振动器能产生单一频率或持续性的振动,还可以感受到虚拟物体的外形等。AtVednc

在此拼个图给大家欣赏一下。AtVednc

2016092800004AtVednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 艾迈斯新款高性能读取IC,推动医疗和工业数字化X射线设 •新型AS585xB产品与X射线影像设备中的标准连接器兼容,组装起来更简便; •平板探测仪制造商可以从三种产品选项中,选择更快、更低功耗的读出IC; •超低噪声AS5850B与最新的IGZO探测器技术、传统的TFT探测器类型都兼容。
  • 雷蛇推出的“N95透明智能多彩口罩”,能解锁手机吗?防新 在2020开始波及全球的新冠病毒疫情后,口罩成为了人们日常必备的用品,口罩在智能化方面一直没有能够被大众接受的创新产品出现。不过最近雷蛇发布了一款N95透明智能口罩,那么,这款透明智能口罩有什么用,大家能接受透明口罩吗?又有哪些智能,能否解锁手机?能否有效防新冠病毒?
  • 整合众多特点和性能以解决数据采集兼容性问题 现代数据采集和信号发生系统既复杂又精细。几十年的 IC 和应用开发以及一代又一代设计已经优化了性能和众多优点,同时使性能不断提高、优点不断增多。新的设计必须凭借精心挑选的性能、尺寸、电源范围、稳定性以及更多优点,实现与之前设计的差异化。同时,DAC、ADC、电压基准等高性能集成电路的性能已经被推进到了极限。关于电压基准,常常必须在精确度和众多优点之间做出设计选择。当需要最高性能时,就有可能缺乏灵活性和兼容性。
  • 如何接收22kHz以下的无线电波? 本设计实例打算“收听”位于0到22kHz之间的频段。这些频率非常低,与人类可以听到的音频频率相对应,但也与电磁波发射有关。如果生成这些频率的信号非常简单,那么构造调谐天线就不那么容易,因为相应的波长等于几百公里。
  • 什么是神经网络?工作原理是什么?——AI算法必懂 关注AI的同学一定都知道神经网络,这是AI算法中模拟人的大脑所衍生出来的学科和算法。可以说,不了解神经网络就不能说动算法,懂算法者必懂神经网络。下面我们就对神经网络的工作原理进行深入浅出的介绍。
  • 晶宇兴专访:继续重点发展军工晶振,兼顾工业、汽车等其 在由ASPENCORE举办的2020全球双峰会现场展商展示区域,小编注意有家几年前接触过的公司——北京晶宇兴科技有限公司,它是一家集研发、生产及销售为一体的石英晶体、晶振等频率控制器件的专业公司。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了