广告

用这个电路来面试:我pass掉了一批工程师

时间:2017-09-01 作者:John Dunn 阅读:
“除草机”电路图?这可不是设计除草机时所需的电路图。而是本文作者在面试新的电路设计人员时,用来判断应征者是否真的是能够分析模拟电路的工程师的“考题”,而透过这样的考题,即可从中剔除不适任的“杂草”…

有时候我必须面试某些填写应征“我”公司职位的人。无论哪一家公司都不时在改变,但是我需要一种方法来看看某些我很快就会和他在一起工作的人,他们在电路分析中的能力。我想出了一个可提供给职位应征候选人电路,并要求他/她为我分析我所指的电路某部分。

一会儿之后,我突然想到这个电路可以说是我的“除草机(杂草吞食者,weed-eater)”,因为它会清除任何真正不善于处理模拟电路分析的人。我想到的电路图:有两个晶体管(transistor),一个NPN和一个PNP,连接方式如图1所示。

023ednc20170901
图1 “除草机”电路图。

与其试图描述一些面试者所经历的曲折路程,我更想简单介绍一下我预计会做出的假设,以及随后的分析。一开始的假设是,此晶体管是硅(Si),并显示0.6伏特(V)基极至发射极电压,且两个晶体管的ß值非常高,使得基极电流几乎为零。

024ednc20170901
图2 分析的第一步。

对于NPN基本上为零的基极电流,R1和R2的电压在NPV的基础上将+12V导通电压分压为+4V。当Vbe为0.6V时,NPN发射极为+3.4V,在R3中流过的电流为3.4mA。

接下来的问题是,NPN发射器和R5如何共享3.4mA电流?

025ednc20170901
图3 分析的第二步。

PNP的Vbe为0.6V,如此使得R4中的电流为0.06mA或60μA。在PNP基极电流几乎为零的情况下,由于NPN的ß值非常高,60μA成为NPN的集电极(collector)电流,也变成NPN的发射极电流。

流过R5的电流必须是R3的3.4mA电流和NPN发射极的0.06 mA电流之间的差值。该值为3.4-0.06=3.34mA。

026ednc20170901
图4 分析的第三步。

R5上的电压降为3.34V,当加到R3顶端的3.4V时,将R5和PNP集电极的顶端放在+ 6.74V。

是不是很容易呢?没错,这个电路是很容易。即便如此,这个电路帮我刷掉了许多不合格的职位候选人。

John Dunn是电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。

(原文发表于Aspencore旗下EDN美国版,参考链接:edn.com)

20160630000123

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
John Dunn
John Dunn是资深电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • Middlebrook和Rosenstark的环路增益测量 测量负反馈电路环路增益T的两种常用方法是Middlebrook的双注入法和Rosenstark的开路/短路法。两种方法都适用于计算机仿真和在工作台上进行人工测试。本文指出了这两种方法的相似性、差异性和独特性,以免将它们混淆。
  • 合成电路内的可变电阻、电感和电容 虽然最初人们认为米勒效应只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但它现在已被有用的拓扑所采纳,如模拟示波器时基积分器。根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也变,本设计实例提出了另一种使用它的好办法。
  • 蒙特卡罗出错了 工程师们进行蒙特卡罗分析并评估其结果的方式有可能是不正确的,错误理解蒙特卡罗分析结果可能导致不正确的技术和商业决策。在电路蒙特卡罗分析中,分析人员设定了会影响结果的每个元件特性的概率,并运行多电路仿真来找出给定函数的各种可能的结果。
  • 2019年中国最需要的十款创新国产IC 5月10日,一年一度的“松山湖中国IC创新高峰论坛”再次盛大举行。松山湖IC论坛已迈进第九个年头,2019年中国最需要的十款创新国产IC有哪些?
  • 经典架构新玩法:用单端仪表放大器实现全差分输出 在交叉连接电路中,输出的共模不会受电阻对失配的影响,因此始终都能实现真正的差分输出。而且,差分信号衰减是可能存在的,这就消除了采用漏斗放大器的必要性。最后,输出的极性由增益电阻的位置决定,从而为用户增加了更多的灵活性。
  • 更深一步了解,电容是起什么作用的? 电容决定式是:C=εS/4πkd,定义式是:C=Q/U,还有有一个它的特性隔直通交, 这也是大多数人对电容的理解吧,虽然知道电容是什么,但是具体起什么作用很少人能清楚。直到工作之后,做了几个电子研发的项目,才对电容的作用有了更深一步的了解。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告