广告

一种X波段非接触式C形微带探针设计

2018-01-26 王小军 聂翀 刘云 阅读:
本文以X波段非接触式探针为设计对象,参照单极子微带天线设计方法,将50ohm微带线延伸出去,形成C形环结构,并将这部分的地去处,达到圈住信号传输线周围的磁场构成磁耦合的目的。为了加强磁耦合,在C形环附近添加去地的反向C形微带线结构以加强耦合,并调节耦合平坦度。根据仿真模型制作了实物,探针置于被测微带传输线上方可获得耦合信号,在X波段范围内,耦合量在-19~-23dB之间。

1引言

微波组件向着集成、小型化方向发展,很多组件采用裸芯片工艺进行贴装(比如T/R组件),常规的测试排故方法已难以满足现代化测试要求,比如射频板通过焊接半截线引出信号测试的方法,已完全不适合高集成度、高净化度的组件测试。据此,本文开展了X波段非接触式射频探针的研究工作,以利于微波组件的调试[1]。PdAednc

001ednc20180126PdAednc

002ednc20180126PdAednc

信号在微带传输线上传输时,在其周围存在闭环的磁场,当外部线圈或外部微带线圈住一定磁通量时,变化的磁场就产生变化的电流,进而就可通过耦合的方式探测出信号。相比于半截线测试射频信号时,这种磁耦合方式无需额外接地。一般情况下,当该非接触式探针与被测对象接触时,短路危险系数较低(与微带线不直接接触)[2]。另外,X波段信号耦合量小于-15dB时,对主路信号无影响,在探测信号的同时不影响系统正常工作[3,4]。PdAednc

003ednc20180126PdAednc

本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。本文创新点在于采用C形环达到空间磁耦合目的,从而将近场能量转化为电流,达到测试信号功率的目的。本文还有一个创新点在于采用互补磁耦合环结构,不仅加强了耦合,还可以调节耦合平坦度。该微带探针不仅可以应用于X波段信号探测,对于其他频段信号也可以探测(耦合度需要测试),因此该探针也能作为测试电磁泄漏的工具,在电磁空间探测领域具有一定的应用价值。该探针所采用的结构能被其他频段射频探针设计借鉴,是实用性很强的产品。PdAednc

2 C形缺地微带探针仿真

2.1 类单极子C形缺地探针设计PdAednc

四分之一波长单极子天线要求延伸出的辐射电长度为四分之一波长,其辐射场分为近场与远场,近场是比较复杂的电磁耦合转换环境。本节所设计的类单极子C形缺地探针长度也为四分之一波长,利用近场的磁生电的原理进行信号探测。其结构图如下图1所示,主体由微带50ohm馈线和C形缺地线组成:PdAednc

004ednc20180126
图1 C形缺地探针结构示意图PdAednc

C形缺地线电长度为四分之一波长:PdAednc

011ednc20180126PdAednc

其中,c为光速,f为工作频率,Er为相对介电常数。PdAednc

该结构的探针耦合度主要取决于与探测对象之间的距离以及C形环的开口大小。注意:该探针C形环必须与所测对象平行!PdAednc

下面仿真分析了探测对象与C形环的距离对耦合度的影响。当C形环与背测微带信号线平行相距1mm、1.2mm、1.4mm时,其耦合度在10GHz分别达到-19.45dB、-21.74dB、-23.46dB,其仿真结果如下图2所示:PdAednc

005ednc20180126
(1)相距1mmPdAednc

006ednc20180126
(2)相距1.2mmPdAednc

007ednc20180126
(3)相距1.4mmPdAednc

图2探针与被测对象的不同耦合距离的仿真结果PdAednc

仿真结果表明,当随着耦合间距的加大,耦合度也在减小,而且x波段耦合度不平坦,达到7dB以上的幅度波动。由于C形环长度较小,且与频率相关,因此本节不对C形环的长度做相关仿真分析。PdAednc

2.2增强型C型探针设计PdAednc

由上节分析可知,C形环探测信号的耦合度受制于耦合间距。在间距达到1mm的情况下,在10GHz才达到-19.45dB。为了增强耦合度,本节在C形环旁边添加了与它相反的C形环,达到电磁耦合互补,增加耦合度的作用。其结构示意图如下图3所示。PdAednc

008ednc20180126
图3 增强型C形缺地探针结构示意图PdAednc

添加的C形环受到相同的磁场耦合,产生与主线相反的电流,从而对主线进行二次耦合,增强了主线的耦合度。仿真了1mm耦合间距的耦合度,仿真结果如下图4所示。在10GHz耦合-18.72dB,x波段耦合度-17.25~-19.27dB,波动2dB左右。PdAednc

009ednc20180126
图4 增强型C形缺地探针1mm耦合间距仿真结果PdAednc

由仿真结果分析可知,添加的反向C形环不仅增加了耦合度,而且具备调节耦合平坦度的功能。PdAednc

2.3非接触式C形微带探针实测PdAednc

根据上节仿真结果制作了实物,如下图5所示。下方微带直通线与探针平行耦合的间距为1mm,测得X波段探针耦合度为-19dB~-23dB,与仿真值偏离不大。PdAednc

010ednc20180126
图5 C形微带探针实物图PdAednc

3 结论

针对微波组件的探测需求,提出一种X波段非接触式微带探针结构,以便于信号检测。本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。该结构形式易于实现,对工艺无特殊要求,可适合于微组装产品的测试排故。  PdAednc

参考文献PdAednc

1、Arriola W A, et al. Wideband 3 dB branchline co upler basedon ( / 4 open circuited coupled lines [ J] . IEEE MicrowaveandWireless Component Letters, 2011, 21( 9) : 486- 488.PdAednc

2、 Reed J.and Wheeler G..J..A method ofanalysis of symmetrical four-port networks[J].IEEE Transactions on MicrowaveTheory and Techniques,1956,50(4):246-252PdAednc

3、Shry-Sann Liao,Pou-Tou Sun,Nien-ChungChin,and Jen-Tee Peng,“A Novel Compact-SizeBranch-LineCoupler,”IEEETrans.Microw.TheoryTech.,vol.15,no.9,pp.588–590,Sep.2005.PdAednc

4、 陈振国等. 微波技术基础与应用. 人民邮电出版社.PdAednc

(本文转载自射频百花潭)PdAednc

20160630000123PdAednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
  • 泰克在其屡获大奖的高性能示波器中增加5G功能 工程师可以使用最新5G软件,在一台示波器上诊断复杂的信号交互,减少麻烦的仪器之间关联需求。
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • VIAVI携手罗德与施瓦茨推出O-RAN无线单元一致性测试解 O-RU测试管理器结合双方的测试解决方案,提供统一的用户体验
  • 小米发布“小感量+磁吸”无线充电预研技术,最高支持50W 据EDN电子技术设计报道,昨日,@小米手机 官微宣布,正式发布小感量+磁吸”无线充电预研技术,其磁吸无线充电功率最高可达50W,损耗降低50%。据悉,该技术与传统无线充电方案采用大感量线圈不同,小米的小感量无线快充技术方案采用小感知线圈去感应发送端能量。
  • “中国IC设计成就奖”提名产品简介:车规级MEMS压差传感 纳芯微NSP183x系列是一款基于高灵敏度的单晶硅压阻效应,并采用先进的MEMS微加工工艺制造而成符合AEC-Q103可靠性标准的汽车级MEMS压差传感器,生命周期内精度和稳定性优于1%FS;其制造平台经过IAFTF16949认证,每片晶圆都通过100% AOI检测,并提供用于封装的Map。还有采用贵金属双焊盘结构设计和稳定性增强的屏蔽层技术的NSP1832,符合汽车级Grade 0标准,特别适合于汽车尾气处理、燃油蒸汽压力测量等恶劣环境。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了