广告

一种X波段非接触式C形微带探针设计

2018-01-26 王小军 聂翀 刘云 阅读:
一种X波段非接触式C形微带探针设计
本文以X波段非接触式探针为设计对象,参照单极子微带天线设计方法,将50ohm微带线延伸出去,形成C形环结构,并将这部分的地去处,达到圈住信号传输线周围的磁场构成磁耦合的目的。为了加强磁耦合,在C形环附近添加去地的反向C形微带线结构以加强耦合,并调节耦合平坦度。根据仿真模型制作了实物,探针置于被测微带传输线上方可获得耦合信号,在X波段范围内,耦合量在-19~-23dB之间。

1引言

微波组件向着集成、小型化方向发展,很多组件采用裸芯片工艺进行贴装(比如T/R组件),常规的测试排故方法已难以满足现代化测试要求,比如射频板通过焊接半截线引出信号测试的方法,已完全不适合高集成度、高净化度的组件测试。据此,本文开展了X波段非接触式射频探针的研究工作,以利于微波组件的调试[1]。pc1ednc

001ednc20180126pc1ednc

002ednc20180126pc1ednc

信号在微带传输线上传输时,在其周围存在闭环的磁场,当外部线圈或外部微带线圈住一定磁通量时,变化的磁场就产生变化的电流,进而就可通过耦合的方式探测出信号。相比于半截线测试射频信号时,这种磁耦合方式无需额外接地。一般情况下,当该非接触式探针与被测对象接触时,短路危险系数较低(与微带线不直接接触)[2]。另外,X波段信号耦合量小于-15dB时,对主路信号无影响,在探测信号的同时不影响系统正常工作[3,4]。pc1ednc

003ednc20180126pc1ednc

本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。本文创新点在于采用C形环达到空间磁耦合目的,从而将近场能量转化为电流,达到测试信号功率的目的。本文还有一个创新点在于采用互补磁耦合环结构,不仅加强了耦合,还可以调节耦合平坦度。该微带探针不仅可以应用于X波段信号探测,对于其他频段信号也可以探测(耦合度需要测试),因此该探针也能作为测试电磁泄漏的工具,在电磁空间探测领域具有一定的应用价值。该探针所采用的结构能被其他频段射频探针设计借鉴,是实用性很强的产品。pc1ednc

2 C形缺地微带探针仿真

2.1 类单极子C形缺地探针设计pc1ednc

四分之一波长单极子天线要求延伸出的辐射电长度为四分之一波长,其辐射场分为近场与远场,近场是比较复杂的电磁耦合转换环境。本节所设计的类单极子C形缺地探针长度也为四分之一波长,利用近场的磁生电的原理进行信号探测。其结构图如下图1所示,主体由微带50ohm馈线和C形缺地线组成:pc1ednc

004ednc20180126
图1 C形缺地探针结构示意图pc1ednc

C形缺地线电长度为四分之一波长:pc1ednc

011ednc20180126pc1ednc

其中,c为光速,f为工作频率,Er为相对介电常数。pc1ednc

该结构的探针耦合度主要取决于与探测对象之间的距离以及C形环的开口大小。注意:该探针C形环必须与所测对象平行!pc1ednc

下面仿真分析了探测对象与C形环的距离对耦合度的影响。当C形环与背测微带信号线平行相距1mm、1.2mm、1.4mm时,其耦合度在10GHz分别达到-19.45dB、-21.74dB、-23.46dB,其仿真结果如下图2所示:pc1ednc

005ednc20180126
(1)相距1mmpc1ednc

006ednc20180126
(2)相距1.2mmpc1ednc

007ednc20180126
(3)相距1.4mmpc1ednc

图2探针与被测对象的不同耦合距离的仿真结果pc1ednc

仿真结果表明,当随着耦合间距的加大,耦合度也在减小,而且x波段耦合度不平坦,达到7dB以上的幅度波动。由于C形环长度较小,且与频率相关,因此本节不对C形环的长度做相关仿真分析。pc1ednc

2.2增强型C型探针设计pc1ednc

由上节分析可知,C形环探测信号的耦合度受制于耦合间距。在间距达到1mm的情况下,在10GHz才达到-19.45dB。为了增强耦合度,本节在C形环旁边添加了与它相反的C形环,达到电磁耦合互补,增加耦合度的作用。其结构示意图如下图3所示。pc1ednc

008ednc20180126
图3 增强型C形缺地探针结构示意图pc1ednc

添加的C形环受到相同的磁场耦合,产生与主线相反的电流,从而对主线进行二次耦合,增强了主线的耦合度。仿真了1mm耦合间距的耦合度,仿真结果如下图4所示。在10GHz耦合-18.72dB,x波段耦合度-17.25~-19.27dB,波动2dB左右。pc1ednc

009ednc20180126
图4 增强型C形缺地探针1mm耦合间距仿真结果pc1ednc

由仿真结果分析可知,添加的反向C形环不仅增加了耦合度,而且具备调节耦合平坦度的功能。pc1ednc

2.3非接触式C形微带探针实测pc1ednc

根据上节仿真结果制作了实物,如下图5所示。下方微带直通线与探针平行耦合的间距为1mm,测得X波段探针耦合度为-19dB~-23dB,与仿真值偏离不大。pc1ednc

010ednc20180126
图5 C形微带探针实物图pc1ednc

3 结论

针对微波组件的探测需求,提出一种X波段非接触式微带探针结构,以便于信号检测。本探针采用的微带形式借鉴单极子天线设计方法,将用于探测的微带线底部的地去掉,从而形成开放的电磁耦合结构。调整用于探测的微带线的长度与宽度可将空间波阻抗变换到50ohm,从而实现匹配。该结构形式易于实现,对工艺无特殊要求,可适合于微组装产品的测试排故。  pc1ednc

参考文献pc1ednc

1、Arriola W A, et al. Wideband 3 dB branchline co upler basedon ( / 4 open circuited coupled lines [ J] . IEEE MicrowaveandWireless Component Letters, 2011, 21( 9) : 486- 488.pc1ednc

2、 Reed J.and Wheeler G..J..A method ofanalysis of symmetrical four-port networks[J].IEEE Transactions on MicrowaveTheory and Techniques,1956,50(4):246-252pc1ednc

3、Shry-Sann Liao,Pou-Tou Sun,Nien-ChungChin,and Jen-Tee Peng,“A Novel Compact-SizeBranch-LineCoupler,”IEEETrans.Microw.TheoryTech.,vol.15,no.9,pp.588–590,Sep.2005.pc1ednc

4、 陈振国等. 微波技术基础与应用. 人民邮电出版社.pc1ednc

(本文转载自射频百花潭)pc1ednc

20160630000123pc1ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 剖析七种面向物联网的定位技术 在全球定位技术方面,GPS应用已非常成熟和广泛,但有一个遗憾是,它不支持室内定位。万物互联大背景下的定位要求是广连接、大范围、高并发和高精度,这就衍生了对定位技术的新需求。
  • 基于LoRa的智能路灯解决方案,提升公共服务质量,助力智能 智能路灯作为智慧城市、智慧乡村及智慧园区的重要组成部分,在提供高质量的公共服务、降低成本和实现可持续发展等方面具有重要作用。目前,智能路灯在全球各地具有广泛的需求,同时中国厂商利用LoRa等创新物联网技术和云计算,已经成为该领域内的重要创新和产业发展力量。
  • 透明电视是如何实现的? 最近深圳地铁6号、10号线,北京地铁6号线的列车玻璃窗上,出现透明显示屏的新闻挺抓人眼球,这些与车窗融为一体的透明显示屏不仅能够显示天气、站点信息,还能上网、看视频、逛网店。加上小米在前不久的10周年发布会上推出了售价5万元的透明电视,又让“透明显示”技术的热度升了温,实际上,透明显示技术的发展少说也有10年往上了……
  • 运营商喊话:电子行业亟需解决的5G三大难题 2019年6月份开始中国的5G牌照正式发放以来,中国5G已经初具规模,整个5G的商用全面加速、新基建更是开启了5G建设提速的窗口。 但对于运营商来说,仍有三大技术难题亟需解决。
  • LoRa不符合工信部技术要求?答案正相反! 去年底,继《中华人民共和国工业和信息化部公告2019年第52号》(进一步规范微功率短距离无线电发射设备的管理)发布后,有多家媒体揣测,这一规范是针对LoRa所制定,LoRa恐怕要凉凉了。在“2020 LoRa创新应用论坛”上,Semtech公司就此给出了官方解答。
  • 实例!详解FPGA如何实现FP16格式点积级联运算 通过使用Achronix Speedster7t FPGA中的机器学习加速器MLP72,开发人员可以轻松选择浮点/定点格式和多种位宽,或快速应用块浮点,并通过内部级联可以达到理想性能。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了