广告

Ćuk博士的谐振转换器降低了对电感磁性的要求

2018-06-11 Michael Dunn 阅读:
Ćuk博士的谐振转换器降低了对电感磁性的要求
Ćuk博士设计的Ćuk DC-DC转换器以其输入和输出纹波电流低而闻名,可作为升降压转换器使用。本设计实例示出了Ćuk博士的一个新转换器架构,这是一种谐振转换器,即便在相当低的频率(例如50kHz)下运行,仍然可以通过极少量的电感与大电容产生谐振。Ćuk博士倾向于保持低开关频率,但提高频率却能以较小的LC值获得较快的瞬态响应。

很多工程师都知道Slobodan Ćuk (发音类似chook) 博士,他是Ćuk DC-DC转换器架构的设计者,这种转换器以输入和输出纹波电流低而闻名,也可作为降压-升压器使用。JOMednc

所以最近当我注意到Ćuk博士又发布了一个新的转换器架构时,我的兴趣马上就被调起来了。JOMednc

我一直与这位和善的博士保持着联系,但是不太清楚他的新设计情况。原型好像已经建成,不过细节还没有透露。JOMednc

该设计被认为是一种谐振转换器,即便在相当低的频率(例如50kHz)下运行,仍然可以通过极少量的电感(甚至可以只是PCB走线)与大电容谐振。JOMednc

DI4-F1-201806JOMednc

图1:Ćuk博士提出的谐振降压转换器兼电荷泵。JOMednc

 JOMednc

我发现现有的电路描述有点难以理解(这无疑说明我的能力还不够),下面只是我对该设计的一些粗浅领会。JOMednc

如果忽略电感器(用短路替换),它基本上就是一个电荷泵,以2:1的比例运行。JOMednc

设想电路或多或少处于平衡状态,开关如图1所示:输入电压将在C1和C2之间被分压。当开关翻转时,C1将与C2并联(通过S2和D1),传输一些电量以补充C2。JOMednc

通过使用电感器,每个电荷泵(CP)相位是谐振周期的一半。这样可以减少标准CP设计中出现的电流尖峰,并且可以在不损失效率的情况下实现输出电压的占空比控制(因为电感会降低电荷传输速率)。我想控制电路也必须采取突发模式,以便在低负载时保持输出电压不上升,因为在电荷转移阶段,L2的能量将不断转移到电容器中。JOMednc

D1和D2可以是实际的二极管,如果不介意损耗的话,但在大多数情况下应该是同步开关。Ćuk博士指出,在这种情况下替代D2的FET可能需要在开路时阻断电流,就像二极管一样,但是其源极代替D2阴极的N沟道FET(如Ćuk博士的一个电路原理图中所示的)将使一个体二极管指向错误的方向。背靠背FET可能是必要的,但是要有正确的控制电路,我认为源可能在左边。JOMednc

通过这个设计,我相信我的分析能力得到了提高,但如果你认为我的分析哪里不对,请分享你对该电路的理解和看法。这是对我需要提高仿真技能的提醒吗?我们拭目以待。JOMednc

Ćuk博士似乎偏爱保持低开关频率,但我认为没有理由不提高频率,这样可以较小的LC值获得较快的瞬态响应(但这样会增加开关损耗)。具体有什么益处呢?让我们看一些例子:JOMednc

50kHz: 1000µF, 10nHJOMednc
500kHz: 22µF, 4.6nHJOMednc
2MHz: 6.8µF, 1nHJOMednc

有时,平方根运算真是有用的。JOMednc

那么,你对这个设计的潜在价值有何看法JOMednc

原文刊登在EDN美国网站,参考链接Ćuk’s resonant buck slashes magneticsJOMednc

《电子技术设计》2018年6月刊版权所有,谢绝转载。JOMednc

20160630000123JOMednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Michael Dunn
Michael Dunn是EDN前主编。多年来他一直从事汽车、医疗、工业、通信和消费电子的设计,涵盖模拟、数字、微电子和软件领域。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 为云端时代建立AI与IoT的相关论述 技术产业正处于两次重大技术革命的边缘——人工智能(AI)负责执行人类无法完成的任务,以及数十亿台设备连接到因特网。除了技术幻想之外,它还提出了更多相关的问题…EDN编辑团队正忙于寻找这些答案,并将以最能满足设计工程师讯息需求的方式呈现。
  • 手工焊接表面贴装器件 到一定阶段,你一定会用到并手工焊接表面贴装元件(SMD)。你可以等到不能逃避时才学,也可以用热情和激情来拥抱竞争。
  • 全新的亚马逊Fire TV Stick无法运行?拆开看看哪里出了 在得知侄子一直使用老旧的MacBook Pro连接电视,浏览影视内容时,我把一个全新的第一代Amazon Fire TV Stick当作圣诞礼物送给了他,但这个圣诞礼物竟然无法连上网络。只好重启我的拆解计划…一起来看看这个无法工作的电视棒里面究竟有什么玄机…
  • PCB的这些事,你不一定都知道! 印刷电路板(PCB)在我们的生活中随处可见。但是,对于PCB,你究竟了解多少?PCB为什么是绿色的,它是谁发明的,板上的白色印线是什么?
  • IoT设备供应商:为什么拒绝报告安全漏洞? 消费类IoT设备中的很多漏洞都不是由设备制造商发现的,而是由外部网络安全研究人员和白帽黑客发现的。这也是为什么人们普遍认为报告安全漏洞是IoT设备安全性的基本要求。那么,制造商是否应该尽一切可能得到这些报告,以便迅速找出并修复漏洞?
  • 散热器可以很大吗? 我们不完全了解基本知识时,都会在技术问题上犯一些错误。我们会用似乎适合情况的假设和误解来取代一些更深的知识,这通常没关系,有许多基于错误的思想已获得伟大的发现和进步…不过,如果可以,最好还是从正确的基础而不是错误的基础理解原因。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了