广告

探讨双向放大器及反馈网络

2019-01-25 Sergio Franco 阅读:
负反馈系列文章开始于经典的方框图,其中放大器和反馈网络都被认为是单向的。采用自下而上的方法,我们来探讨反馈网络通常是双向的。

负反馈系列文章开始于经典的方框图,其中放大器和反馈网络都被认为是单向的。采用自下而上的方法,我们来探讨反馈网络通常是双向的。Hlrednc

现在是时候来讨论最常见的情形了,其实放大器也是双向的。为此,我们来看图1a的电路,其中放大器的双向性可以用前向增益a和反向增益b来建模说明。 (由于ro的存在,反馈网络也是双向的。)Hlrednc

EDNT190108_Feedback_TA31P1Hlrednc
图1:(a)双向放大器的经典同相配置 (b)标记电路以进行直接分析。 Hlrednc

Hlrednc

电路采用经典的同相放大器配置,旨在实现接近理想的闭环增益。Hlrednc

EDNT190108_Feedback_TA31F1Hlrednc
但是,实际电路与公式(1)有多接近? 为了简化公式并给出电路的直观感觉,我们假设整个电路的电阻都是相同的: Hlrednc

Hlrednc

EDNT190108_Feedback_TA31F2Hlrednc

因此,Aideal = 1 + 10/10 = 2 V/V。电路很简单,可以直接算出其闭环增益。参考图1b,我们在节点vn处应用KCL来代入:Hlrednc

EDNT190108_Feedback_TA31F3Hlrednc
利用叠加原则,可以得到: Hlrednc

Hlrednc

EDNT190108_Feedback_TA31F4Hlrednc
用公式(2)的值代替电阻,消除vn并归纳,即可得到: Hlrednc

Hlrednc

EDNT190108_Feedback_TA31F5Hlrednc
在a→∞时,可以得出A → 2/(1 – b),这与A = 2 V/ V相差甚远。 但是,如果b = 0,电路确实可以得到A → 2 V/V (= Aideal)。 甚至更奇怪的是当b = 1时,可以得到A = (2a + 1)/6 → a/3,这表示电路将放大全开环增益的约1/3! Hlrednc

Hlrednc

渐近增益模型(AGM)

为了更直观,我们使用渐近增益模型来表达A: Hlrednc

EDNT190108_Feedback_TA31F6Hlrednc

其中T是环路增益,A∞是当T→∞时的闭环增益,A0是当T→0时的闭环增益。后者源于误差放大器周围的信号馈通和反馈网络,因此它被恰当地称为馈通增益。 以下是图1a电路的T、A和A0的计算。Hlrednc

让我们通过电压注入法来得到T。为此,我们将vi置零,并将测试电压vt与信号源avd串联,如图2所示。很容易看出,当vi = 0时,依赖于信号源建模的前向增益变为-avn。 因此,vr = –avn。 此外,由于ro = R2 (= 10 kΩ),vo是vn和vf的平均值,或者vo = (vn + vf)/2。 节点vn处的KCL为:Hlrednc

EDNT190108_Feedback_TA31P2  Hlrednc

图2:为图1中放大器求取T的电路。Hlrednc

EDNT190108_Feedback_TA31F7Hlrednc
代入v= -vr/a 及vo = (-vr/a + vf)/2,并归纳,在公式(2)的条件下可以得到: Hlrednc

Hlrednc

EDNT190108_Feedback_TA31F8Hlrednc
我们注意到如果放大器是单向的(b = 0),电路将得到T = a/5。 显然,b≠0的状态势必会改变电路的交叉频率,从而改变相位裕度。更奇怪的是当b = 1的情况,因为这时会得到T = 0! Hlrednc

Hlrednc

根据公式(5),通过使a→∞可以实现T→∞,从而得到A。这使得vd = vo/aHlrednc

→ vo/∞ = 0,因此反相输入电压为vi,如图3a所示。 注意,即使vd = 0,因为电压bvo的缘故, ii  ≠ 0。 事实上,根据欧姆定律,ii  = bvo/ri。 此外,由KVL和KCL可以得到:Hlrednc

EDNT190108_Feedback_TA31F9Hlrednc

归纳和求解比率vo/vi,可以得到:Hlrednc

Hlrednc

EDNT190108_Feedback_TA31P3 Hlrednc

图3:为图1中放大器求取(a)A (b)A0的电路。Hlrednc

因此,可以确认A ≠ Aideal。 很明显,要想A接近Aideal,电路必须满足条件:Hlrednc

EDNT190108_Feedback_TA31F11Hlrednc

单向放大器肯定满足这个条件,因为它们b = 0。双向放大器的ri=∞时,也可以满足这个条件。 有趣的是,单位增益电压跟随器也满足条件,其中R2 = 0。然后,在a→∞的情况下,可以得到vo→vi,尽管放大器具有双向性!Hlrednc

根据公式(5),让a→0可以达到T→0的极限条件,从而找到A0。我们看一看图3b的电路,其中R1和R2共用节点处的电压表示为2vo。根据KCL:Hlrednc

EDNT190108_Feedback_TA31F12Hlrednc
归纳并求解比率vo/vi,在公式(2)的条件下可以得到: Hlrednc

Hlrednc

EDNT190108_Feedback_TA31F13Hlrednc

作为验证,将公式(5)、(6)和(8)代入公式(4),可以得回公式(3)。Hlrednc

精心设计的电路会在足够宽的频率范围内满足公式(7)的条件,但在高频(即交叉频率所在的位置)下,寄生效应的存在可能导致某些放大器类型的b上升。鉴于ri的高频趋向于容性,而ro趋向于感性,双向性将会影响电路的稳定性条件。Hlrednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Feedback using bidirectional blocks revisited。)Hlrednc

本文为《电子技术设计》20191月刊杂志文章。Hlrednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Sergio Franco
Sergio Franco是多本书的作者,是一名退休的大学教授,不得已而进入模拟电子行业。Sergio Franco在意大利学习物理专业,毕业后获得了富布赖特奖学金,并作为研究生进入声名卓著的伊利诺伊大学ILLIAC III计算机项目小组工作...后来却发现数字方向的研究职位已经没有了,只剩一个没人感兴趣的模拟方向的职位。因此,Sergio Franco不得不坐在实验室里开始自学模拟知识(晶体管、运算放大器、数据转换器、对数放大器和模拟乘法器)。Sergio Franco的物理背景使他能够用物理视角看待电路,而必要时数学只是一种更严格的验证工具。他用所学的模拟专业知识来设计实时作曲的电子系统(SalMar Contruction)。获得博士学位后,Sergio Franco离开了学术界,并在1980年重回到学术界,致力于培养模拟工程师,期中数百人现在在硅谷工作。除了写书,教书也一直是Sergio Franco最喜欢的职业。欲了解更多关于Sergio Franco的信息,请访问http://online.sfsu.edu/sfranco。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 学子专区—ADALM2000实验:跨阻放大器输入级 本次实验旨在研究简单跨阻放大器的输入级配置。
  • “中国IC设计成就奖”提名产品简介:16位250KSPS多通道S MS5182N/MS5189N是4/8通道、16bit、SAR型模数转换器。MS5182N/MS5189N内部集成无失码的16位SAR ADC、低串扰多路复用器、内部10PPM低漂移基准电压源(可以选择2.5或4.096V)、温度传感器、可选择的单极点滤波器以及当多通道依次连续采样时非常有用的序列器。
  • “中国IC设计成就奖”提名产品简介:功放芯片8002A优势 8002A是一款AB类,单声道带关断模式,桥式音频功率放大器。
  • “中国IC设计成就奖”提名产品简介:固定增益仪表放大器 仪表放大器是模拟信号链领域里仅次于模数转换/数模转换(ADC/DAC)的高端产品,技术门槛高、研发难度大,市场应用上长期以来都只能从欧美供应商中选择,国内仪表放大器尚处于起步阶段,可选用的产品型号还相等匮乏。RS633的推出将打破欧美厂商在高性能仪表放大器芯片细分领域的市场垄断,实现仪表放大器产品的国产化,保障自给自足,推动国内高端模拟芯片的研发水平快速发展、提升。
  • “中国IC设计成就奖”提名产品简介:艾为Smart K音频功 AW87559是艾为专门为提高音乐输出动态范围,提高整体音质而设计的音频功放IC。它是新型高效、高PSRR、低噪声、恒定大音量的第五代Smart K音频放大器。
  • 自耦变压器SPICE建模 自耦变压器又称为单绕组变压器,可分升压变压器及降压变压器;它是一种只有一组线圈的变压器,其中一个线圈作为另一线圈的一部份...
  • “中国IC设计成就奖”提名产品:内置24位高精度ADC的32 本芯片是带有LCD驱动和24位高精度ADC的32位MCU的SOC产品,提供120KB Flash空间用于存储用户程序。
  • “中国IC设计成就奖”提名产品:和芯星云ⅣUC9810 NebulasIV UC9810 是和芯星通自主研发的新一代射频基带及高精度算法一体化 GNSS SoC 芯片。通过低成本、小型化、低功耗、高集成度、优异的RTK性能、双天线定向、高性价比等特点,包括国内首创22nm工艺的多模多频低功耗高精度射频基带一体化SoC技术、双处理器主从异步架构,构建全系统多频点、高性能、高安全的运算平台、时频联合抗干扰及片内宽窄带射频抗干扰技术、多频点信号间的辅助捕获和跟踪技术、RTK序贯差分策略,开发的一款应用于高精度市场的GNSS SoC芯片。
  • “中国IC设计成就奖”提名产品:信号调理及变送专用SoC SD23M201是一款用于阻式或电压型传感器应用的信号调理芯片。内部集成2路24位ADC,可分别用于主信号测量和辅助温度信号测量,主ADC支持EMI检测,可降低干扰信号的影响。内部集成32位可编程MCU,支持客户开发,可通过串行方式实现在线调试。集成16位DAC,支持比例电压、绝对电压和4-20mA电流和PWM输出,模拟输出允许超量程10%。灵活的串行接口SPI、UATR、I2C、OWI,其中,OWI接口可借助电源线进行单线通信,无需额外线路。多种恒流源、恒压源激励输出,满足热电阻、电偶、桥式压力传感器等测量需求。6.5V~40V宽供电电压,适合多种工业现场应用需求。
  • 颠覆数字视觉:意法半导体率先推出50万像素深度图像ToF 突破性的 FlightSense 3D 传感器增强智能手机、AR/VR设备和消费类机器人的成像能力;在40nm堆叠晶圆上实现专有间接飞行时间 (iToF) BSI 技术,新传感器集高性能、低功耗和小尺寸于一身
  • 工程师指南:如何动态调整合适的输出电压 电源通常设置为固定输出电压,以为电气负载供电。然而,有些应用需要可变的供电电压。例如,在某些情况下,如果根据相应的工作状态调整内核电压,微控制器可以更有效地运行。本文将展示如何使用为此目的而开发的专用数模转换器(DAC)来即时调整电源的输出电压。
  • 汽车EDR国标出炉,都涉及哪些技术? 根据强制性国家标准《汽车事件数据记录系统》(GB 39732-2020)的规定,自2022年1月1日起,国内所有新生产的乘用车都将强制要求配备汽车事件数据记录系统(EDR),或者符合规定的DVR(车载视频行驶记录系统)。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了