广告

探讨双向放大器及反馈网络

时间:2019-01-25 作者:Sergio Franco 阅读:
负反馈系列文章开始于经典的方框图,其中放大器和反馈网络都被认为是单向的。采用自下而上的方法,我们来探讨反馈网络通常是双向的。

负反馈系列文章开始于经典的方框图,其中放大器和反馈网络都被认为是单向的。采用自下而上的方法,我们来探讨反馈网络通常是双向的。

现在是时候来讨论最常见的情形了,其实放大器也是双向的。为此,我们来看图1a的电路,其中放大器的双向性可以用前向增益a和反向增益b来建模说明。 (由于ro的存在,反馈网络也是双向的。)

EDNT190108_Feedback_TA31P1
图1:(a)双向放大器的经典同相配置 (b)标记电路以进行直接分析。

电路采用经典的同相放大器配置,旨在实现接近理想的闭环增益。

EDNT190108_Feedback_TA31F1
但是,实际电路与公式(1)有多接近? 为了简化公式并给出电路的直观感觉,我们假设整个电路的电阻都是相同的:

EDNT190108_Feedback_TA31F2

因此,Aideal = 1 + 10/10 = 2 V/V。电路很简单,可以直接算出其闭环增益。参考图1b,我们在节点vn处应用KCL来代入:

EDNT190108_Feedback_TA31F3
利用叠加原则,可以得到:

EDNT190108_Feedback_TA31F4
用公式(2)的值代替电阻,消除vn并归纳,即可得到:

EDNT190108_Feedback_TA31F5
在a→∞时,可以得出A → 2/(1 – b),这与A = 2 V/ V相差甚远。 但是,如果b = 0,电路确实可以得到A → 2 V/V (= Aideal)。 甚至更奇怪的是当b = 1时,可以得到A = (2a + 1)/6 → a/3,这表示电路将放大全开环增益的约1/3!

渐近增益模型(AGM)

为了更直观,我们使用渐近增益模型来表达A:

EDNT190108_Feedback_TA31F6

其中T是环路增益,A∞是当T→∞时的闭环增益,A0是当T→0时的闭环增益。后者源于误差放大器周围的信号馈通和反馈网络,因此它被恰当地称为馈通增益。 以下是图1a电路的T、A和A0的计算。

让我们通过电压注入法来得到T。为此,我们将vi置零,并将测试电压vt与信号源avd串联,如图2所示。很容易看出,当vi = 0时,依赖于信号源建模的前向增益变为-avn。 因此,vr = –avn。 此外,由于ro = R2 (= 10 kΩ),vo是vn和vf的平均值,或者vo = (vn + vf)/2。 节点vn处的KCL为:

EDNT190108_Feedback_TA31P2  

图2:为图1中放大器求取T的电路。

EDNT190108_Feedback_TA31F7
代入v= -vr/a 及vo = (-vr/a + vf)/2,并归纳,在公式(2)的条件下可以得到:

EDNT190108_Feedback_TA31F8
我们注意到如果放大器是单向的(b = 0),电路将得到T = a/5。 显然,b≠0的状态势必会改变电路的交叉频率,从而改变相位裕度。更奇怪的是当b = 1的情况,因为这时会得到T = 0!

根据公式(5),通过使a→∞可以实现T→∞,从而得到A。这使得vd = vo/a

→ vo/∞ = 0,因此反相输入电压为vi,如图3a所示。 注意,即使vd = 0,因为电压bvo的缘故, ii  ≠ 0。 事实上,根据欧姆定律,ii  = bvo/ri。 此外,由KVL和KCL可以得到:

EDNT190108_Feedback_TA31F9

归纳和求解比率vo/vi,可以得到:

EDNT190108_Feedback_TA31P3

图3:为图1中放大器求取(a)A (b)A0的电路。

因此,可以确认A ≠ Aideal。 很明显,要想A接近Aideal,电路必须满足条件:

EDNT190108_Feedback_TA31F11

单向放大器肯定满足这个条件,因为它们b = 0。双向放大器的ri=∞时,也可以满足这个条件。 有趣的是,单位增益电压跟随器也满足条件,其中R2 = 0。然后,在a→∞的情况下,可以得到vo→vi,尽管放大器具有双向性!

根据公式(5),让a→0可以达到T→0的极限条件,从而找到A0。我们看一看图3b的电路,其中R1和R2共用节点处的电压表示为2vo。根据KCL:

EDNT190108_Feedback_TA31F12
归纳并求解比率vo/vi,在公式(2)的条件下可以得到:

EDNT190108_Feedback_TA31F13

作为验证,将公式(5)、(6)和(8)代入公式(4),可以得回公式(3)。

精心设计的电路会在足够宽的频率范围内满足公式(7)的条件,但在高频(即交叉频率所在的位置)下,寄生效应的存在可能导致某些放大器类型的b上升。鉴于ri的高频趋向于容性,而ro趋向于感性,双向性将会影响电路的稳定性条件。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Feedback using bidirectional blocks revisited。)

本文为《电子技术设计》20191月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Sergio Franco
Sergio Franco是多本书的作者,是一名退休的大学教授,不得已而进入模拟电子行业。Sergio Franco在意大利学习物理专业,毕业后获得了富布赖特奖学金,并作为研究生进入声名卓著的伊利诺伊大学ILLIAC III计算机项目小组工作...后来却发现数字方向的研究职位已经没有了,只剩一个没人感兴趣的模拟方向的职位。因此,Sergio Franco不得不坐在实验室里开始自学模拟知识(晶体管、运算放大器、数据转换器、对数放大器和模拟乘法器)。Sergio Franco的物理背景使他能够用物理视角看待电路,而必要时数学只是一种更严格的验证工具。他用所学的模拟专业知识来设计实时作曲的电子系统(SalMar Contruction)。获得博士学位后,Sergio Franco离开了学术界,并在1980年重回到学术界,致力于培养模拟工程师,期中数百人现在在硅谷工作。除了写书,教书也一直是Sergio Franco最喜欢的职业。欲了解更多关于Sergio Franco的信息,请访问http://online.sfsu.edu/sfranco。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 为什么智能功率音频放大器对智能手机越来越重要 多年来,手机的屏幕尺寸变得越来越大,但音频体验并不总能并驾齐驱,特别是在“响亮”喇叭模式下。 因此,更多的高端手机提供立体声作为附加功能,智能手机和其他音频播放设备中采用立体声音频的趋势表明,音频放大器在智能手机设计中扮演着尤为重要的角色。
  • 对高速电流反馈和全差分放大器DC精度的考虑 电流反馈放大器(CFA)能提供最高的大信号带宽(LSBW),但DC精度相对较差。本文将详细阐述引起其DC精度差的因素。
  • 合成电路内的可变电阻、电感和电容 虽然最初人们认为米勒效应只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但它现在已被有用的拓扑所采纳,如模拟示波器时基积分器。根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也变,本设计实例提出了另一种使用它的好办法。
  • 经典架构新玩法:用单端仪表放大器实现全差分输出 在交叉连接电路中,输出的共模不会受电阻对失配的影响,因此始终都能实现真正的差分输出。而且,差分信号衰减是可能存在的,这就消除了采用漏斗放大器的必要性。最后,输出的极性由增益电阻的位置决定,从而为用户增加了更多的灵活性。
  • 探讨高速放大器的直流精度 电流反馈放大器(CFA)本身有极高的压摆率,却具有相对较差的DC精度。电压反馈放大器(VFA)的压摆率已经通过许多方法得到了提高,本篇将介绍这些方法。全差分放大器(FDA)因为多了共模控制回路,带来了一些新的DC精度考虑因素。
  • 射频功率放大器安全性设计 射频功率放大器随处可见,其中的一些可能释放过高的射频输出功率而对人体造成伤害。这些许多是固态放大器,但很多真正大功率级别的使用真空管。无论哪种类型的射频放大器,都有可能碰到放大器设计者有时没有做出明确说明的故障。本设计实例用实际电路说明了如何进行射频功率放大器的安全性设计。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告