广告

用人工突触模仿人脑,所需能量是最先进计算系统的1/10

2019-05-06 阅读:
根据一项新研究,一种类似电池的设备可以作为计算系统中的人工突触,用于模仿大脑的效率和学习能力。大脑只需要很少的能量就能学习和记忆大量信息的能力激发了类脑或神经形态计算机的研究。

根据一项新研究,一种类似电池的设备可以作为计算系统中的人工突触,用于模仿大脑的效率和学习能力。大脑只需要很少的能量就能学习和记忆大量信息的能力激发了类脑或神经形态计算机的研究。vHVednc

 一个研究团队之前开发了这种计算机的一部分:一种充当人工突触的设备,模仿神经元在大脑中的通信方式。vHVednc

在《科学》杂志上,该团队报告称,这些设备的9个原型阵列在处理速度、能效、重复性和耐用性方面表现优于预期。vHVednc

未来,团队成员希望将他们的人工突触与传统电子设备相结合,他们希望这可以成为推动小型设备人工智能学习向前发展的一步。vHVednc

“如果你的记忆系统能够以我们提出的能源效率和速度进行学习,那么你可以把它放在智能手机或笔记本电脑中,”该论文的作者之一Scott Keene说,他是Alberto Salleo实验室,斯坦福大学材料科学与工程系教授,“这将开启对我们自己的网络进行训练并在设备上本地解决问题的能力,而无需依靠数据传输。”vHVednc

人工突触模仿人脑

该团队的人工突触类似于电池,改进后,研究人员可以接通或切断两个终端之间的电流,这种电流模仿了大脑的学习方式。这是一种特别有效的设计,因为数据处理和存储发生在一个动作中,在传统的计算机系统中,数据首先被处理然后才被传输到存储器。vHVednc

了解这些设备如何在阵列中执行是至关重要的一步,因为它允许研究人员同时编程多个人工突触。这比逐个编程突触节省时间,并且可以与大脑实际工作的方式相比较。vHVednc

在先前版本的设备测试中,研究人员发现他们的处理和存储动作所需的能量是最先进计算系统所需的能量的十分之一,这有利于执行特定的任务。vHVednc

不过,研究人员担心所有这些设备在较大阵列中协同工作时可能会产生过多的耗电。因此,他们重新设计每个设备以减少电流,使电池更糟糕,但阵列更节能。vHVednc

3×3的阵列依赖于第二种类型的设备,由共同作者Joshua Yang在马萨诸塞大学阿默斯特分校开发,用作阵列中突触编程的开关。vHVednc

“要连接所有东西需要进行大量的故障排除和大量的连线。我们必须确保所有阵列组件都协同工作,“Salleo实验室的博士后学者Armantas Melianas说。“但是当我们看到一切都亮起来时,它就像一棵圣诞树。那是最激动人心的时刻。“vHVednc

在测试过程中,阵列的性能超出了研究人员的预期。它以如此快的速度运行,团队预测他们需要使用特殊的高速电子设备来测试这些设备的下一个版本。vHVednc

在测量了3×3阵列的高能效后,研究人员对大型1024×1024突触阵列进行了计算机模拟,并估计它可以基于目前智能手机或小型无人机相同的电池供电。研究人员还能够将设备切换超过十亿次,这是其速度的另一个证据,没有看到其性能有所减弱。vHVednc

“事实证明,聚合物器件,如果你能很好地使用它们,就可以像传统的硅产品一样具有弹性。从我的角度来看,这可能是最令人惊讶的方面。“Salleo说。vHVednc

“对我来说,它改变了我对这些聚合物设备的可靠性以及我们如何使用它们的看法。”vHVednc

未来的测试

研究人员还没有将他们的阵列进行测试,这将决定它的学习效果,这也是他们计划研究的东西。该团队还希望了解他们的设备如何能够适应不同的环境,例如高温,以及将其与电子设备集成在一起。还有许多基本问题需要解决,这些问题可以帮助研究人员准确理解为什么他们的设备表现如此出色。vHVednc

“我们希望更多的人开始研究这种类型的设备,因为没有多少人关注这个特定的架构,但我们认为它非常有前景,”Melianas说,“因为仍有很大的改进空间和创造力,我们只是触及表面。“vHVednc

其他共同作者来自斯坦福大学; 桑迪亚国家实验室; 和马萨诸塞大学阿默斯特分校。这项工作的资金来自桑迪亚国家实验室,美国能源部,国家科学基金会,半导体研究公司,斯坦福大学研究生奖学金基金,以及斯坦福大学博士后研究的Knut和Alice Wallenberg基金会。vHVednc

(原文发表于 stanford ,futurity;雷锋网编译)vHVednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • Microchip模拟嵌入式SuperFlash技术助力存算一体创新 SuperFlash memBrain存储器解决方案使知存科技片上系统(SoC)能够满足最苛刻的神经处理成本、功耗和性能要求
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • “中国IC设计成就奖”提名产品简介:高性能GPU芯片及解 沐曦致力于提供国际顶尖的高性能通用GPU芯片及解决方案,结合我国人工智能等领域对GPU芯片的强烈市场需求,对标当前国际领先的GPU芯片产品立项开展技术研发。
  • “中国IC设计成就奖”提名产品简介:全志科技高性能智能 高性能三重异构智能语音应用处理器R329芯片,采用业界先进的半导体工艺,首款集成Arm中国周易语音处理器。集成DSP、NPU、64位CPU及丰富的外设接口,创新突破了低功耗、边缘语音AI超级算力、多重异构通讯、多核调度等关键技术,处于国内领先水平。
  • “中国IC设计成就奖”提名产品简介:追萤3D AI芯片Ai310 埃瓦科技自主研发的追萤 3D AI芯片创新的采用了异构架构 SOC 设计和微内核架构设计,包含 NPU 神经网络加速核、3D 立体匹配加速核、ISP 核等功能性处理核心;其中 NPU 神经网络加速核基于可重构以及片上多级存储和缓存设计,使数据可高效送达加速核心,使该芯片拥有领先的高效智能处理能力、分析以及低功耗管理的能力;其设计架构的资源复用性使硬件计算单位可灵活分配,适应于不同场景的计算需求;在 3D 视觉算法加速方面创新的采用了自研立体匹配算法的 3D 加速微内核架构设计,可有效加速双目立体视觉、结构光等多种 3D 视觉算法。
  • “中国IC设计成就奖”提名产品简介:ada200优势 1.九天睿芯,感存算一体芯片,可以在功耗和性能满足”低功耗AI场景“的同时,成本也大幅度下降。2.采用模数混合的存内计算架构,ADA200相比传统数字芯片,1/3成本,1/10功耗。
  • “中国IC设计成就奖”提名产品简介:面向边缘视觉分析的 面向边缘视觉分析的数据流AI芯片CAISA是鲲云科技自主研发的专为人工智能图像提供高性能计算加速的AI芯片产品,是全球首个量产的数据流AI芯片。
  • “中国IC设计成就奖”提名产品简介:人工智能语音芯片CI 1、人工神经网络硬件引擎架构:具备高计算性能,进行神经网络计算时相当于数十个CPU并行计算的能力;低访问带宽和低功耗,通过并行计算和共用神经元权重参数,大幅降低访问带宽及功耗;高可配置性,支持神经元层数和节点数、神经网络结构的配置。 2、单、双、及麦克风阵列降噪增强技术:支持各种平稳、非平稳环境噪声抑制;可支持线阵、圆阵结构等常用麦阵结构;采用定向波束形成与自适应信号处理技术相结合;拾取方向动态可调;支持单声道、立体声等回声抑制;采用独立研发的空间预测技术,支持强回声情况下回声抑制;与降噪处理技术相结合;自动增益调节、高通、带通滤波等。 3、低功耗和可靠性设计技术:具备低功耗集成电路设计技术,包括基于活动语音检测的低功耗控制技术和时钟门控技术。 4、逻辑设计技术:掌握了语音信号处理IP的设计方法,包括算法硬件化、定点、浮点运算处理等。同时积累了整套SoC设计所需的控制类IP,并成功通过流片验证。
  • “中国IC设计成就奖”提名产品简介:智能安防AI SoC芯片 亿智SV826是2021年推出的高性能的安防AI SoC芯片,主要面向视频编解码AI摄像机产品。
  • “中国IC设计成就奖”提名产品简介:低功耗视觉AIoT SoC 亿智SH516芯片是亿智电子2021年推出的一款低功耗的智能视觉AIoT SoC芯片。
  • “中国IC设计成就奖”提名产品简介:高性能大算力全场景 - AI性能跑分更强,超越Nvidia Orin - 应用当前先进的安全技术和研发流程 - 国内唯一可获得、支持快速量产的整车智能计算平台芯片
  • “中国IC设计成就奖”提名产品简介:高端AIoT芯片RV1126 RK3568是瑞芯微的高端AIoT芯片。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了