广告

电源噪声测试的陷阱

2019-06-12 15:02:05 David Maliniak 阅读:
配电网(PDN)的噪声测量已经成为调试和排查系统设计问题的焦点,但是,确定PDN完整性的过程却暗藏“陷阱”。让我们看看PDN测量和探测中导致错误测试结果的一些挑战,以及如何克服它们。

当前的电路和系统使用1.2V甚至更低的供电电压运行,即使电压的微小变化也会产生误码、抖动、错误切换以及与瞬态相关的问题,让我们难以解决。hvVednc

配电网(PDN)的噪声测量已经成为调试和排查系统设计问题的焦点,但是,确定PDN完整性的过程并非没有“陷阱”。在本文中,我们将介绍PDN测量和探测中导致错误测试结果的一些挑战,以及如何克服它们。hvVednc

小心RF干扰

来自EMI/RFI的干扰噪声是其中的一个挑战,即使是对1.5V电池的电压测量,这种干扰也是显而易见的,考虑到电池内部的电化学反应和由于探测引起的一点电流消耗,我们可以预见到电压波形上会有适量的噪声。hvVednc

我们尝试将电池放入支架并探测其两端的端子,示波器屏幕上出现的噪声让我们感到惊讶。图1中顶部波形是电池电压波形(粉红色,通道2),底部波形(黄色,通道1)显示的是作为参考的示波器的基底噪声,两个波形使用相同的垂直刻度,电池电压波形显示出其上存在很高噪声,远远超出预期,电压平均值为1.56V,噪声为33mVPK-PKhvVednc

Noise-F1-20190612.pnghvVednc
图1:1.5V电池的初始测量结果显示出噪声(上部波形)和示波器的本底噪声(下部波形),显然,外部噪声已进入测量系统。hvVednc

可以看到噪声是宽频带的,达到示波器的全带宽(在此为1GHz),都没有衰减的迹象。hvVednc

Noise-F2-20190612.jpghvVednc
图2:电池电压测量的频谱图显示其是宽频带的(上部曲线),下部曲线显示在前100MHz中的特定频率处具有峰值。hvVednc

图2中下部波形显示了噪声频谱的前100MHz的放大图,它显示出明显的噪声峰值,奇怪的是,它几乎从15MHz开始,接着是30MHz,45MHz,依此类推,这无疑是来自外部的RF噪声。hvVednc

因此,明显的补救措施是适当地屏蔽电池(图3),确保屏蔽连接到探头的返回路径。hvVednc

Noise-F3-20190612.jpghvVednc
图3:在探头周围做屏蔽,即使是粗糙的屏蔽,也可以降低RF噪声。hvVednc

增加屏蔽的差异很明显,在图4的下部曲线是屏蔽后的频谱图,噪声从大约-60dBm减小到-100dBm,相当于减少了4倍,幅度等效约为45nV。hvVednc

Noise-F4-20190612.jpghvVednc
图4:通过屏蔽探头,与图3相比,示波器显示噪声降低。hvVednc

最后我们做最终的完整检查,将适当屏蔽的电池噪声与示波器的基底噪声进行比较(图5)。示波器基底噪声在通道1(黄色,下部波形)和电池噪声在通道2(粉红色,上部波形)上,它们几乎是相同的。hvVednc

Noise-F5-20190612.jpghvVednc
图5:当电池屏蔽EMI/RFI时,示波器基底噪声(黄色)和屏蔽的电池噪声(粉红色)几乎完全相同。hvVednc

因此,除了屏蔽良好的同轴电缆连接以外,使用任何其他方式探测低电平信号,都会受到干扰,任何与DUT屏蔽分开的裸露导体都会像天线一样。hvVednc

EMI-RFI干扰通常具有宽频带性质,为了最大限度地减少这方面的影响,探头前端应尽可能地设计为类似同轴电缆,该前端中的任何电感都会降低测量带宽,并可能导致测量中出现振铃。更糟糕的是,将获得“天线效应”并且探头将拾取EMI/RFI干扰。因此,确保示波器和DUT之间的连接看起来尽可能像同轴连接。hvVednc

在测试设计方面,如果可以以微型同轴连接器的形式在测试板上添加测试点,然后将同轴电缆连接到这些点,那么将大大减少EMI/RFI影响电源测量的可能性。hvVednc

了解你的10X探头

正如上面所展示的那样,EMI/RFI可能会对电源噪声测量造成严重破坏,在相同的情况下,我们也应始终注意示波器探头的某些特性,即10X衰减探头,通常新示波器都标配这种探头,当使用10X衰减探头而不是带微夹钳前端的BNC探头时,我们会得到什么样的测量结果?hvVednc

图6显示了两种状况拾取的噪声,在探头前端打开的情况下,探头对电场更敏感,10X探头测量到72mVPK-PK和11mVRMS,而同轴探头测量到36mVPK-PK和4.2mVRMShvVednc

Noise-F6-20190612.jpghvVednc
图6:使用10X衰减探头(上部)和BNC探头(底部)捕获的信号波形显示不同的噪声水平。hvVednc

图7显示的是与图6相同的测量,但是探头前端短接在一起,在这种情况下,探头对磁场更敏感。然而,将两条波形的噪声分量再次对比分析,这次,10X探头测得33mVPK-PK和1.6mVRMS,同轴电缆探头测得24mVPK-PK和1.2mVRMShvVednc

Noise-F7-20190612.jpghvVednc
图7:使用和图6同样的探头和信号,但是将探头前端短接,对磁场更敏感。hvVednc

我们知道这些测量中的噪声是EMI/RFI,解决RF拾取问题的方法是从DUT到示波器外壳的适当屏蔽。hvVednc

图8显示了应用适当屏蔽并在探头前端短路的情况下进行测量的结果,正如所期望的那样,就像在EMI/RFI实验中一样,BNC探头的信号几乎没有噪声。hvVednc

Noise-F8-20190612.jpghvVednc
图8:使用和图7同样的探头和信号,但应用适当的屏蔽显著降低EMI/RFI。hvVednc

10X衰减探头发生了什么?请记住,这些波形以相同的10mV/div刻度显示(参见提示)。但10X探头的噪声是BNC探头噪声的10倍,原因是两个探头在示波器的放大器中看到相同的噪声,但在10X探头前端反射了10倍。hvVednc

这些例子表明,当使用任何类型的10X衰减探头在示波器的本底噪声处采集低电平信号时,已经有效地放弃了10倍的信号,并且具有相同的噪声量,可以预期信噪比(SNR)会降低20dB。hvVednc

带宽vs.电流负载

测量电源噪声时,另一个棘手的问题是:如何在测量中实现高带宽,同时最大限度地降低DUT上的电流负载,鉴于DUT是电源,不希望从它汲取太多电流。但是这两个测量要求是相互矛盾的,它与互连信号的基本特性有关。hvVednc

假设探头上有一根同轴电缆,示波器的输入阻抗为1MΩ,正在探测低阻抗的电源,从该电源发射到探头的任何瞬变,则会遇到1MΩ输入阻抗并反射回来,从而引发振铃(图9)。hvVednc

Noise-F9-20190612.pnghvVednc
图9:在低阻抗电源轨和1MΩ输入阻抗之间连接6英寸同轴电缆会在信号采集时产生反射和振铃伪影。hvVednc

将看到多少振铃取决于相对于示波器带宽的同轴线缆的长度,如果想将振铃频率推高到超过1GHz示波器的带宽限制,则同轴电缆需要小于3英寸,太长的线缆是相当不切实际的,任何超过这个长度的线缆,当使用仪器的全带宽时,那么将在仪器显示屏上看到振铃误差。hvVednc

为了更加实用,需要更长的同轴电缆,只要示波器的1MΩ输入阻抗与电源DUT的阻抗之间存在阻抗不匹配,就会产生反射和振铃。因此,要想不产生振铃误差,你可以获得的最高带宽可能低于预期。hvVednc

可以通过在示波器上使用50Ω输入端接来避免振铃问题,这种端接设计用于最小化电缆反射。hvVednc

但这里有一个矛盾:如果在示波器上使用50Ω输入端接,则在电源上将包含50Ω负载。如果测量5V电压轨,这是示波器中的50Ω电阻可以承受的最高电压,它将消耗100mA,如果电源提供100A,这不是问题,但如果它是LDO,最大电流为200mA,示波器将消耗一半的裕量。hvVednc

另一种选择是使用10X衰减探头,它有一个1MΩ的示波器输入,因此不会使电源负载过大。如上所述,10X探头将失去20dB的SNR。一些工程师在探头前端使用450Ω串联电阻来制作“手工”的10X探头,负载是500Ω,同轴电缆仍然有50Ω终端,所以他们都很高兴。但同样,已经引入了10倍衰减,并且由于阻抗匹配牺牲了SNR。hvVednc

使用同轴探针可以测量高带宽,但为此,需要50Ω的负载,但这会使电源负载过大,并基本上阻止我们探测超过5V的电源。通常,测试和测量都会涉及妥协,在某种程度上,每种测量方案都将决定如何平衡这些妥协以获得最有意义的结果。hvVednc

克服这些挑战的方法是使用有源探头,有源电源轨探头在低频时具有高阻抗,因此它们不会使电源轨负载过大,而在50Ω示波器输入终端电阻中引入一个带有隔直电容的并联高通滤波器。此外,有源电源轨探头通常可以承受高达30V的电压,并且能够产生大的偏移。hvVednc

有源电源轨探头是满足探测电源独特挑战的最佳折衷方案。hvVednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:The pitfalls of power-rail noise measurements。)hvVednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 美国国土安全部(DHS)被曝大量购买和使用手机定位数据 据EDN电子技术设计了解,美国公民自由联盟18日发表最新文件,称美国国土安全部(DHS)使用移动定位数据来追踪人们的行动,据悉美国公民自由联盟发表的记录多达数千页,其规模远远超过之前的认知。
  • 实施增材制造以推动创新 是否可以打印?这是 3D 技术世界中真实存在的问题,其中的 3D 打印,也称为增材制造,可以通过数字化仿真输出几乎所有物品,包括汽车。
  • 用于高达10kA功率扼流圈测量的晶闸管脉冲发生器 Bs&T Frankfurt am Main GmbH公司开发了一种基于晶闸管的新型脉冲发生器,并在各种感性功率器件上进行了测试。该脉冲发生器具有一些得益于晶闸管高脉冲电流处理能力的独特特性,与基于IGBT的系统相比,它具有一些主要优势。
  • 如何评估3D音频解决方案 沉浸式3D/空间音频,与XR/360视频相结合,给您带来宛若置身于茂密深林的视听体验——飘落的细枝在脚下嘎吱作响,一头鹿向东原跑去,当您的目光追着一只红衣凤头鸟而远去时,您能听见它扇动翅膀的声音。精准的头部跟踪有助于提供逼真的用户体验(UX),了解评估解决方案的关键因素,可以帮助您在不断发展的行业中找到方向。
  • 波兰网友拆德国产无线烟感,烟雾探测原来是这样实现! 本文将展示具有433MHz RF通信的CC-80型烟雾探测器的内部,我将指出它的各个部件都有什么作用,还将解释它如何检测烟雾。
  • 示波器也在向“触摸平板”进化:泰克MSO2 我曾是一名工程师,20多年前,还在上学的时候,每当老师给我们上实验课,我们就经常会去捣鼓那些放在实验室桌子上的“宝贝疙瘩”:示波器;工作以后,更是少不了与这些“笨重”的家伙打交道。后来慢慢的淡出了工程师的行业,但是依然在工作中看到各种技术支持人员每次要测试、调试的时候,就把“笨重”的设备搬到公司的检测室或者专业检测机构,进行各种各种的测试、检测、测量。当时脑海中就出现过这样的念头:为什么不能有一款“轻量级”、“便于携带”、“操控灵活”的示波器呢?
  • 采用加速度计的地震探测器 该设备无意取代地质研究所所使用的专业模型,也无法提供对地震事件的精确测量。它有助于在不提供距离或震级的情况下被动地确定地震事件。
  • 北京大学图灵班大四学生获SRC第一名,曾发多篇EDA一作论 北京大学学计算机科学系图灵班大四学生郭资政,获得本科生组全球第一名(First Place)。郭资政的研究兴趣包括组合优化问题的数据结构、算法设计和 GPU 加速,目前已直博本校集成电路学院。
  • 多分支时钟树中的抖动分析和最小化 时钟信号的抖动是电子电路中时序问题的主要原因,这其中有几个来源。在本文中,我们分析了时钟树中抖动的类型和来源,并讨论了良好的设计实践和认真的组件选择相结合如何有助于减少抖动的影响。
  • 百元以内的高性价比万用表 万用表大致分为指针型万用表和数字型万用表,现在指针型万用表的使用已经越来越少了,工程师更多使用的是精准度更高的数字型万用表,那么百元以下有哪些功能比较全的万用表呢?
  • 微软革新可折叠手机设计:内外360度折叠,无铰链无折痕 微软准备通过一种新设计颠覆可折叠智能手机市场!微软新专利显示,一种革命性的折叠机制可使可折叠屏幕既可以向内弯曲,也可以向外弯曲,实现 360 度的折叠。该设计将直接取消铰链并解决传统折叠方法所产生的折痕问题……
  • 2022年全国高校经费统计:清华大学人均预算56.78万元,“ 近日,2022年全国高校经费统计结果出炉,前六所高校已经连续三年霸榜。整体来看,“双一流”建设高校占据绝对优势,理工科院校经费多于文科,但大部分都有所增长。此外,好几所高校预算的复合年增长率超过了30%,如“国防七子”、云南大学、南昌大学等
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了