广告

详解语音识别的技术原理:语音如何变为文字?

2019-07-23 14:32:20 阅读:
简要给大家介绍一下语音怎么变文字的吧。需要说明的是,这篇文章为了易读性而牺牲了严谨性,因此文中的很多表述实际上是不准确的。对于有兴趣深入了解的同学,本文的末尾推荐了几份进阶阅读材料。

简要给大家介绍一下语音怎么变文字的吧。需要说明的是,这篇文章为了易读性而牺牲了严谨性,因此文中的很多表述实际上是不准确的。对于有兴趣深入了解的同学,本文的末尾推荐了几份进阶阅读材料。下面我们开始。eyEednc

首先,我们知道声音实际上是一种波。常见的mp3等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如Windows PCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。eyEednc

015ednc20190722eyEednc

在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。eyEednc

要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:eyEednc

016ednc20190722eyEednc

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。eyEednc

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。eyEednc

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。eyEednc

017ednc20190722eyEednc

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:eyEednc

  1. 音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见The CMU Pronouncing Dictionary‎。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。eyEednc

  2. 状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。eyEednc

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:eyEednc

把帧识别成状态(难点)。eyEednc

把状态组合成音素。eyEednc

把音素组合成单词。eyEednc

如下图所示:eyEednc

018ednc20190722eyEednc

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。eyEednc

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧在状态S3上的条件概率最大,因此就猜这帧属于状态S3。eyEednc

019ednc20190722eyEednc

那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做“训练”,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。eyEednc

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。eyEednc

解决这个问题的常用方法就是使用隐马尔可夫模型(Hidden Markov Model,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:eyEednc

第一步,构建一个状态网络。eyEednc

第二步,从状态网络中寻找与声音最匹配的路径。eyEednc

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。eyEednc

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。eyEednc

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为“解码”。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。eyEednc

020ednc20190722eyEednc

这里所说的累积概率,由三部分构成,分别是:eyEednc

  1. 观察概率:每帧和每个状态对应的概率eyEednc

  2. 转移概率:每个状态转移到自身或转移到下个状态的概率eyEednc

  3. 语言概率:根据语言统计规律得到的概率eyEednc

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。eyEednc

这样基本上语音识别过程就完成了。eyEednc

以上的文字只是想让大家容易理解,并不追求严谨。事实上,HMM的内涵绝不是上面所说的“无非是个状态网络”,如果希望深入了解,下面给出了几篇阅读材料:eyEednc

1. Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, 77(2): 257-286.eyEednc
入门必读。深入浅出地介绍了基于HMM的语音识别的原理,不注重公式的细节推导而是着重阐述公式背后的物理意义。eyEednc

2. Bilmes J A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, 1998, 4(510): 126.eyEednc
详细介绍了用E-M算法训练HMM参数的推导过程,首先讲E-M的基本原理,然后讲解如何应用到GMM的训练,最后讲解如何应用到HMM的训练。eyEednc

3. Young S, Evermann G, Gales M, et al. The HTK book (v3.4). Cambridge University, 2006.eyEednc
HTK Book,开源工具包HTK的文档。虽然现在HTK已经不是最流行的了,但仍然强烈推荐按照书里的第二章流程做一遍,你可以搭建出一个简单的数字串识别系统。eyEednc

4. Graves A. Supervised Sequence Labelling with Recurrent Neural Networks. Springer Berlin Heidelberg, 2012: 15-35.eyEednc
基于神经网络的语音识别的入门必读。从神经网络的基本结构、BP算法等介绍到 LSTM、CTC。eyEednc

5. 俞栋, 邓力. 解析深度学习——语音识别实践, 电子工业出版社, 2016.eyEednc
高质量的中文资料非常稀有,推荐买一本。最早把深度学习技术应用于语音识别就是这本书的作者。eyEednc

(本文转载自《知乎》:语音识别的技术原理是什么?——张俊博eyEednc

  • 我瑞了
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 称可超越ChatGPT,微软推出新人工智能模型——Kosmos-1 微软推出了 Kosmos-1,据称它是一种多模式大型语言模型 (MLLM),不仅可以对语言提示做出反应,还可以对视觉线索做出反应,可用于一系列任务,包括图像说明、视觉问题回答等等。
  • MWC 2023落下帷幕,盘点国产厂商的那些亮眼表现 MWC 2023(世界移动通信大会2023)于2月27日在巴塞罗那正式向全球移动产业伙伴开启,大会也于3月2日正式落下帷幕。展会持续五天,根据官方数据统计,2023年MWC有2000多家全球厂商参展,中国有以OPPO、荣耀为代表的共计28个国产厂商参展。本次展会,各大厂商纷纷拿出自己的看家本领,可谓是亮点多多,今天就带大家一起看看展会上国产厂商展现的那些亮眼技术吧~
  • 维持ChatGPT运行将需要超过3万块Nvidia显卡 据TrendForce的最新预测,人工智能(AI)将成为Nvidia的最大收入来源之一。该研究公司估计,OpenAI的ChatGPT最终将需要超过3万块Nvidia显卡的算力以维持运行。
  • Win11端Phone Link添加新支持,iPhone能在PC端接打电话 3月1日,微软宣布,为Win11平台上的Phone Link应用程序添加对iPhone的支持。用户通过该应用程序连接PC和iPhone之后,可以在PC端拨打和接听电话、发送和接收短信、直接在PC上查看iPhone的通知。预览版要求Phone Link应用程序版本1.23012.169.0或更高版本。
  • 谷歌达成量子计算机第二里程碑,实现量子计算纠错 2月24日,谷歌CEO Sundar Pichai撰写博客,称公司量子计算又向前迈了一大步。谷歌量子AI团队有史以来首次通过实验证明:可以通过增加量子比特的数量来减少错误。在其最新的研究中,谷歌用49个物理量子比特制作的逻辑量子比特超越了用17个量子比特制作的逻辑量子比特。
  • NVIDIA:超级算力,赋能整车中央计算 由全球电子技术领域知名媒体集团AspenCore主办的“中国国际汽车电子高峰论坛”于2023年2月23日正式拉开帷幕。会上,NVIDIA中国区软件解决方案总监卓睿分享了题为“超级算力,赋能整车中央计算”的主题演讲。
  • 我国煤炭行业首个OTA无线射频实验室建成并投入使用 据中国煤炭科工集团官网消息,近日,煤炭行业首个“OTA无线射频实验室”在中国煤炭科工集团煤科院建成并投入应用。
  • 复旦团队发布国内首个类ChatGPT模型MOSS,与ChatGPT相比 复旦大学自然语言处理实验室邱锡鹏教授团队悄然发布了国内首个类ChatGPT模型MOSS(https://moss.fastnlp.top/),不仅一举刷出数个微博热搜话题,在知乎上更是直接冲上热榜,话题浏览进306万次。知乎匿名网友称已经拿到了内测资格,并实时更新了一波测试结果……
  • “IDM929”14nm工艺自研国产GPU芯片即将流片 2月14日消息,据智绘微电子官方消息,该公司自研国产GPU芯片“IDM929”已完成设计,即将进入流片阶段。
  • 国内首个类ChatGPT模型MOSS内测,中国版ChatGPT还差什么 2月20日,复旦大学自然语言处理实验室邱锡鹏教授团队发布国内首个类ChatGPT模型MOSS(https://moss.fastnlp.top/),现已发布至公开平台,邀公众参与内测。
  • NOR Flash克服可穿戴设备设计挑战 为了持续改进下一代设备中的各种功能,可穿戴设备和耳戴式设备依赖于内存。内存是实现高级设备的关键设计因素...
  • 模拟计算重新定义边缘AI性能新境界 传统的数字计算扩展方法,即转向更先进的半导体工艺节点,显然已经达到物理极限(即摩尔定律已经失效),而不断攀升的制造成本则限制了只有少数几家最富有的公司才能使用该技术。下一代的人工智能处理亟需采用新的方法。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了