广告

采用低压晶体管进行高压电流检测

2019-08-16 09:32:00 Seagan Yi-O'Kelly 阅读:
专用集成电路的应用使电流监控变得越来越简单。各种电流监控集成电路随时买得到,而且多数情况下都工作得很好,还有各种仪表放大器也是如此。使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。

专用集成电路的应用使电流监控变得越来越简单。各种电流监控集成电路随时买得到,而且多数情况下都工作得很好,还有各种仪表放大器也是如此。使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。mdsednc

本设计实例中的电路用于监控伺服系统+180/−180V电源的两个电源轨中的电流。图1显示了用于监控负轨的电路相关部分。监控正轨的电路只需用PNP设备替换NPN即可。采用价格便宜的双晶体管和1%电阻来设置Iref以及Re1和Re2可获得最佳效果。Rsense应为0.1%并且具有足够的额定功耗。mdsednc

DI2-F1-201908.jpgmdsednc
图1:负轨监控电路。mdsednc

图1所示电路和所有类似拓扑结构的设计灵感均来自电流镜拓扑结构,以及Re2上的电流随Rsense上的电流、Rc1上的电压随Rsense上的电压线性变化的这个概念。mdsednc

该电路的作用依赖于Re1和Re2。让Iref相当小而Re2和Re1相当大,当Re2和Re1的值相等时,相对于Rsense上的电压,发射极的电压将增加。当负载在无负载和满负载之间变化时,这将反过来减小输出设备上Vce的变化。mdsednc

因此,审慎而明智地选择Iref、Re1、Re2、Rc2和Rc1可以防止Q2进入饱和状态并且不会超过晶体管的最大工作电压。请记住,hoe=I(集电极)/VA(早期电压)意味着减少Ic的变化也会减少β的变化,从而改善线性度。Rc是Rc1和Rc2之和,因此比率Rc1/Rc确定无负载时Vout−处的偏移。满载时Rsense上的电压决定了Re2和Rc1的电流变化,从而决定了Vout−的满量程输出。一旦Iref值建立,就可以很容易计算出Rc和Rd上所需的无负载电压。通过使用发射极电阻,可以显著降低Vce变化对Q2的β的影响,而且从仿真数据可以看出,β的变化对负载电流和输出电压之间相关性的影响相对较小。鉴于这些结果,采用类似于Wilson电流镜的配置似乎并没有必要。mdsednc

图2和图3显示了用恒流源产生Iref的替代解决方案。如果Vss稳定且没有纹波,则可以省略恒流源发生器,并且可以通过设定Rd值来提供Irefmdsednc

DI2-F2-201908.jpgmdsednc
图2:用恒流源产生Iref的替代解决方案。mdsednc

DI2-F3-201908.jpgmdsednc

图3:设置FET偏置,使启动时Iref不会导致Vce或Vds超过最大值。mdsednc

图4所示的电路反转了Vout-,消除了偏移,并将输出调整到所需范围,同时还可以过滤输出端出现的电源纹波或负载尖峰。若配以带有ADC的微控制器,则可以将电路简化为仅反转Vout-mdsednc

DI2-F4-201908.jpgmdsednc
图4:反转Vout-消除了偏移,将输出调整到所需范围,并可以过滤输出端的电源纹波或负载尖峰。mdsednc

如果满载时VRe1至少比VRsense大10倍,那么Q2将不会进入饱和状态,并且:mdsednc

DI2-E1-201908.pngmdsednc

mdsednc
DI2-E2-201908.pngmdsednc

Iref=IRe1,无负载,即Iload=0,那么:mdsednc

DI2-E3-201908.pngmdsednc

Vccs是恒流源两端的电压,IRe1约等于Iref,Vbe可以为0.6到0.65V:mdsednc

DI2-E4-201908.pngmdsednc

Vce是Q2上无负载时所需的最大电压。IRe2约等于Iref,那么:mdsednc

DI2-E5-201908.pngmdsednc

Vout-无负载时所需的失调电压决定了Rc1的值:mdsednc

DI2-E6-201908.pngmdsednc

由于I(Rsense)=Iref/10,因此可以估算满载时的IRe2mdsednc

DI2-E7-201908.pngmdsednc

在最大负载电流下,Vout−的满量程值约为:mdsednc

DI2-E8-201908.pngmdsednc

采用LTspice电路仿真软件产生图5、图6和图7的曲线,以显示电路工作期间的线性度、滤波效果以及Vce和Vds。负载电流从0增加到1安培,输出电压叠加在负载电流上。其结果与实际的电路性能非常接近。mdsednc

由于负载电流尖峰值持续时间短,滤波防止了跳闸。隔离虽可能没有必要,但在设计高压电路时应始终予以考虑。mdsednc

DI2-F5-201908.jpgmdsednc
图5:将图4中25nF的电容C1去掉后的Voutmdsednc

DI2-F6-201908.jpgmdsednc
图6:图4中加上25nF电容C1时的Voutmdsednc

DI2-F7-201908.jpgmdsednc
图7:有源设备上的电压。mdsednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:High-voltage current sensing with low-voltage transistors。)mdsednc

本文为《电子技术设计》2019年8月刊杂志文章。 mdsednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 工程师更乐意在开发物联网中采用AI 根据Newark发表的最新调查报告,工程师更乐意在其设计中部署AI,以期改善产品并进而提升其系统的ROI...
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 儿童电子学(一):LED 电子是当今的热门话题,许多孩子们也期望了解并掌握这个重要技术的基本原理。本文是一个面向孩子们的基础电子课程,将并以简单有趣的方式教他们基础知识,激发他们的兴趣。
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • 三星推出其最快的 GDDR6 内存!基于EUV 10nm 1z工艺 结合创新的电路设计和先进的绝缘材料,基于极紫外 (EUV) 技术的第三代 10 纳米级 (1z)1 工艺,三星的新内存将成为第一款速度高达 24Gbps 的 GDDR6。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 抢跑3nm制程竞赛,三星能否领先台积电? 藉由比台积电更早一点开始制造3nm芯片,是否有助于三星获得显著优势还有待观察,而这也将会是一件有趣的事...
  • 利用GaN技术在狭窄的环境中保持“冷静” 虽然GaN器件可实现更高的功率密度,但为了实现高可靠性的适销对路的适配器设计,仍有一些系统级问题需要解决。这些问题以散热设计和EMI合规性为中心。适配器内的电子电路必须要在放置它们的狭小空间中保持冷(表现出低温升)静(低发射噪声)。本文将着眼于实现这些目标的技术。
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了