向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

采用低压晶体管进行高压电流检测

时间:2019-08-16 作者:Seagan Yi-O'Kelly 阅读:
专用集成电路的应用使电流监控变得越来越简单。各种电流监控集成电路随时买得到,而且多数情况下都工作得很好,还有各种仪表放大器也是如此。使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。

专用集成电路的应用使电流监控变得越来越简单。各种电流监控集成电路随时买得到,而且多数情况下都工作得很好,还有各种仪表放大器也是如此。使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。WFSednc

本设计实例中的电路用于监控伺服系统+180/−180V电源的两个电源轨中的电流。图1显示了用于监控负轨的电路相关部分。监控正轨的电路只需用PNP设备替换NPN即可。采用价格便宜的双晶体管和1%电阻来设置Iref以及Re1和Re2可获得最佳效果。Rsense应为0.1%并且具有足够的额定功耗。WFSednc

DI2-F1-201908.jpgWFSednc
图1:负轨监控电路。WFSednc

图1所示电路和所有类似拓扑结构的设计灵感均来自电流镜拓扑结构,以及Re2上的电流随Rsense上的电流、Rc1上的电压随Rsense上的电压线性变化的这个概念。WFSednc

该电路的作用依赖于Re1和Re2。让Iref相当小而Re2和Re1相当大,当Re2和Re1的值相等时,相对于Rsense上的电压,发射极的电压将增加。当负载在无负载和满负载之间变化时,这将反过来减小输出设备上Vce的变化。WFSednc

因此,审慎而明智地选择Iref、Re1、Re2、Rc2和Rc1可以防止Q2进入饱和状态并且不会超过晶体管的最大工作电压。请记住,hoe=I(集电极)/VA(早期电压)意味着减少Ic的变化也会减少β的变化,从而改善线性度。Rc是Rc1和Rc2之和,因此比率Rc1/Rc确定无负载时Vout−处的偏移。满载时Rsense上的电压决定了Re2和Rc1的电流变化,从而决定了Vout−的满量程输出。一旦Iref值建立,就可以很容易计算出Rc和Rd上所需的无负载电压。通过使用发射极电阻,可以显著降低Vce变化对Q2的β的影响,而且从仿真数据可以看出,β的变化对负载电流和输出电压之间相关性的影响相对较小。鉴于这些结果,采用类似于Wilson电流镜的配置似乎并没有必要。WFSednc

图2和图3显示了用恒流源产生Iref的替代解决方案。如果Vss稳定且没有纹波,则可以省略恒流源发生器,并且可以通过设定Rd值来提供IrefWFSednc

DI2-F2-201908.jpgWFSednc
图2:用恒流源产生Iref的替代解决方案。WFSednc

DI2-F3-201908.jpgWFSednc

图3:设置FET偏置,使启动时Iref不会导致Vce或Vds超过最大值。WFSednc

图4所示的电路反转了Vout-,消除了偏移,并将输出调整到所需范围,同时还可以过滤输出端出现的电源纹波或负载尖峰。若配以带有ADC的微控制器,则可以将电路简化为仅反转Vout-WFSednc

DI2-F4-201908.jpgWFSednc
图4:反转Vout-消除了偏移,将输出调整到所需范围,并可以过滤输出端的电源纹波或负载尖峰。WFSednc

如果满载时VRe1至少比VRsense大10倍,那么Q2将不会进入饱和状态,并且:WFSednc

DI2-E1-201908.pngWFSednc

WFSednc
DI2-E2-201908.pngWFSednc

Iref=IRe1,无负载,即Iload=0,那么:WFSednc

DI2-E3-201908.pngWFSednc

Vccs是恒流源两端的电压,IRe1约等于Iref,Vbe可以为0.6到0.65V:WFSednc

DI2-E4-201908.pngWFSednc

Vce是Q2上无负载时所需的最大电压。IRe2约等于Iref,那么:WFSednc

DI2-E5-201908.pngWFSednc

Vout-无负载时所需的失调电压决定了Rc1的值:WFSednc

DI2-E6-201908.pngWFSednc

由于I(Rsense)=Iref/10,因此可以估算满载时的IRe2WFSednc

DI2-E7-201908.pngWFSednc

在最大负载电流下,Vout−的满量程值约为:WFSednc

DI2-E8-201908.pngWFSednc

采用LTspice电路仿真软件产生图5、图6和图7的曲线,以显示电路工作期间的线性度、滤波效果以及Vce和Vds。负载电流从0增加到1安培,输出电压叠加在负载电流上。其结果与实际的电路性能非常接近。WFSednc

由于负载电流尖峰值持续时间短,滤波防止了跳闸。隔离虽可能没有必要,但在设计高压电路时应始终予以考虑。WFSednc

DI2-F5-201908.jpgWFSednc
图5:将图4中25nF的电容C1去掉后的VoutWFSednc

DI2-F6-201908.jpgWFSednc
图6:图4中加上25nF电容C1时的VoutWFSednc

DI2-F7-201908.jpgWFSednc
图7:有源设备上的电压。WFSednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:High-voltage current sensing with low-voltage transistors。)WFSednc

本文为《电子技术设计》2019年8月刊杂志文章。 WFSednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 哪些元器件最容易引发电路故障? 电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小;完全失去容量;漏电;短路。
  • 实用风席卷EMC/SIPI年度大会 着重探讨电磁兼容性(EMC)、信号完整性(SI)和电源完整性(PI)的IEEE EMC+SIPI 2019年度大会与往年的最大不同是有更多的实际展示和技术研讨会。在这次会议上,EMC基础知识、实用技术内容和学术论文之间首次找到了平衡。此外,此次大会更加关注年轻的专业人士,因为一些“资深人士”开始退休,这些技能需要传给下一代。
  • 用二极管得出对数和指数,对交直流电流实现光学传感 为了最大程度地降低电流采样电阻器引起的效率损耗和功率损耗,其电阻通常限制为毫欧级,所得IR电压为毫伏级,并且所产生的小信号可能会持续存在,需要从带有数十伏或数百伏的电源轨的共模当中提取出,并且有大噪声分量存在。这些设计挑战在许多创新拓扑和专用器件的开发中都有所反映。本文从另一个角度解决了这个经典问题。
  • 仅用一个100Ω电阻,就能解决电路振荡问题? 我刚工作进了一家模拟电子大公司,碰到一个关于放大器电路稳定性的问题带容性负载的缓冲放大器电路像鸟儿在唱歌。“加一个100Ω的负载电阻,” 一个工程师告诉我,“相信我吧,肯定没错。”我依言新建了一个电路,可是电路还在振荡……
  • 用于电机控制的优化∑-∆调制电流测量 在高性能电机和伺服驱动器中,基于隔离式sigma-delta(Σ-Δ)的模数转换器(ADC)已成为首选的相电流测量方法。这些转换器以其强大的电流隔离和卓越的测量性能而闻名。随着新一代ADC的推出,其性能也在不断提高,但是,要充分利用最新的ADC的功能,就需要对其他的电机驱动器进行相应的设计。
  • 热回路究竟是什么? 当涉及到开关稳压器及其电磁兼容性(EMC)时,总是会提到热回路。尤其是优化印刷电路板上的走线布局时,更是离不开这个话题。但热回路到底指的是什么?
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告