向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

深入理解功率MOSFET数据表(上)

时间:2019-09-03 作者:高杨 阅读:
在汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。

在汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。

数据表中的参数分为两类:即最大额定值和电气特性值。对于前者,在任何情况下都 不能超过,否则器件将永久损害;对于后者,一般以最小值、最大值、和典型值的形式给出,它们的值与测试方法和应用条件密切相关。在实际应用中,若超出电气特性值,器件本身并不一定损坏,但如果设计裕度不足,可能导致电路工作失常。

在功率MOSFET的数据表给出的参数中, 通常最为关心的基本参数为Rds(on)VBR(DSS)QgsVgs。更为高级一些的参数,如ID、Rthjc、SOA、Transfer Curve、EAS等,将在本文的下篇中再做介绍。

为了使每个参数的说明更具备直观性和易于理解,选用了英飞凌公司的功率MOSFET,型号为IPD90N06S4-04。本文中所有的表格和图表也是从IPD90N06S4-04中摘录出来的。下面就对这些参数做逐一的介绍。

Rds(on): 通态电阻。Rds(on)是和温度和Vgs相关的参数,是MOSFET重要的参数之一。在数据表中,给出了在室温下的典型值和最大值,并给出了得到这个值的测试条件,详见下表。

012ednc20190902

除了表格以外,数据表中还给出了通态电阻随着结温变化的数据图。从图中可以看出,结温越高,通态电阻越高。正是由于这个特性,当单个功率MOSFET的电流容量不够时,可以采用多个同类型的功率MOSFET并联来进行扩流。

如果需要计算在指定温度下的Rds(on),可以采用以下的计算公式。

013ednc20190902

上式中a为与工艺技术有关的常数,对于英飞凌的此类功率MOSFET,可以采用0.4作为常数值。如果需要快速的估算,可以粗略认为:在最高结温下的Rds(on)通态电阻是室温下通态电阻的2倍。下表的曲线给出了Rds(on)随环境温度变化的关系。

014ednc20190902

VBR(DSS):定义了MOSFET的源级和漏级的最大能购承受的直流电压。在数据表中,此参数都会在数据表的首页给出。注意给出的VBR(DSS)值是在室温下的值。

015ednc20190902

此外,数据表中还会给出在全温范围内(-55℃…+175℃) VBR(DSS) 随着温度变化的曲线。

016ednc20190902

从上表中可以看出,VBR(DSS)是随着温度变化的,所以在设计中要注意在极限温度下的VBR(DSS)仍然能够满足系统电源对VBR(DSS) 的要求。

Qgs:数据表中给出了为了使功率MOSFET导通时在给定了的Vds电压下,当Vgs变化时的栅级电荷变化的曲线。从图表中可以看出,为了使MOSFET完全导通,Vgs的典型值约等于10V,由于器件完全导通,可以减少器件的静态损耗。

017ednc20190902

018ednc20190902

Vgs:描述了在指定了漏级电流下需要的栅源电压。数据表中给出的是在室温下,当Vds=Vgs 时,漏极电流在微安等级时的Vgs 电压。数据表中给出了最小值、典型值和最大值。

019ednc20190902

需要注意的是,在同样的漏极电流下,Vgs 电压会随着结温的升高而减小。在高结温的情况下,漏极电流已经接近达到了Idss(漏极电流)。为此,数据表中还会给出一条比常温下指定电流大10倍的漏极电流曲线作为设计参考。如下图所示。

020ednc20190902

以上介绍了在功率MOSFET数据表中最为设计者关心的基本参数 Rds(on)VBR(DSS)QgsVgs。如果需要更为深入的了解和使用功率MOSFET,还需要进一步的去了解更深入的一些参数,将在本文的下篇《深入理解功率MOSFET数据表(下)》中再做介绍。

 

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
高杨
近20年在汽车电子TOP10公司经验,特别是在车载控制器领域(多媒体、车身、驾驶辅助及VCU)。曾任职博世汽车专家级工程师,超过10年在汽车零部件(博世和大陆汽车),5+年汽车半导体(德州仪器和英飞凌),历任多种资深(系统、设计、产品)工程师职务。丰富的平台开发(从0到1)及产品开发的工程经验和技术积累。 Ford SYNC第一代的核心硬件工程师,定义和开发了德州仪器(TI)第一款智能高边驱动器(TPS1H100-Q1),填补了公司在汽车电子市场的技术路线和市场空白。 整理和标准化了与设计开发的技术文件,可以直接用于指导设计及融入公司的文件体系中,满足体系审查要求和提高公司的设计流程和管理水平。硬件设计流程管理的模板(45+篇),硬件设计评审和检查清单模板(50+篇)。 企业内训师认证(TTT) ,超过2500页汽车电子设计培训内容PPT,满足从入门、中级及高级汽车电子设计的培训要求,目前在4家企业内部实施过培训,收到了很好的反馈。 目前获得13件汽车电子专利(截止2019年12月)。《EDN电子技术设计》汽车电子专栏作者ednchina.com/author/gaoyang
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 超级结MOSFET和IGBT在电动汽车充电桩的应用 插电式混合动力/电动汽车(xEV)包含一个高压电池子系统,可采用内置的车载充电器(OBC)或外部的充电桩进行充电。充电(应用)要求在高温环境下具有高电压、高电流和高性能,开发高能效、高性能、具丰富保护功能的充电桩对于实现以尽可能短的充电时间续航更远的里程至关重要。本文将主要介绍用于电动汽车直流充电桩的超级结MOSFET和具成本优势的IGBT方案。
  • 2018 EDN Hot 100产品:电源和功率器件 在2018 EDN Hot 100产品中,“功率器件”部分包括IC、稳压器、控制器、驱动器及FET等。
  • 消除便携式设备的充电烦恼 实施USB PD的一个挑战,是以更高的功率水平提供不同的输出电压,以满足人们迫切需要的快速充电,同时也不会最终用一个能效低、成本高和笨重的适配器。
  • GaN:适合5G应用的高频衬底材料(3) 集成电路的另一种新兴衬底材料SiC也是“上升之星”,而将GaN与SiC进行对比,前者的优势显而易见。
  • GaN:适合5G应用的高频衬底材料(2) GaN材料是一种较新的衬底,非常适合高性能的电子应用,特别是在高频方面,比如5G应用。由于这种材料具有优异的性能,因此用GaN器件来设计电子电路会非常有吸引力:利用GaN作为高频功率放大器的衬底,可以为电源管理带来更高的效率并实现更宽的宽带。
  • 拆解:CDK数显10W无线充电器,充电速度看得见 有线方式充电,可以串一个ChargerLab Power-Z表监测充电过程中电压、电流的信息,但是无线充电就没这么方便。在无线充电器上配置一个显示充电电压电流信息的装置一定程度能缓解强迫症的紧张。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告