广告

深入理解功率MOSFET数据表(上)

2019-09-03 高杨 阅读:
深入理解功率MOSFET数据表(上)
在汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。

汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。pSJednc

数据表中的参数分为两类:即最大额定值和电气特性值。对于前者,在任何情况下都 不能超过,否则器件将永久损害;对于后者,一般以最小值、最大值、和典型值的形式给出,它们的值与测试方法和应用条件密切相关。在实际应用中,若超出电气特性值,器件本身并不一定损坏,但如果设计裕度不足,可能导致电路工作失常。pSJednc

在功率MOSFET的数据表给出的参数中, 通常最为关心的基本参数为Rds(on)VBR(DSS)QgsVgs。更为高级一些的参数,如ID、Rthjc、SOA、Transfer Curve、EAS等,将在本文的下篇中再做介绍。pSJednc

为了使每个参数的说明更具备直观性和易于理解,选用了英飞凌公司的功率MOSFET,型号为IPD90N06S4-04。本文中所有的表格和图表也是从IPD90N06S4-04中摘录出来的。下面就对这些参数做逐一的介绍。pSJednc

Rds(on): 通态电阻。Rds(on)是和温度和Vgs相关的参数,是MOSFET重要的参数之一。在数据表中,给出了在室温下的典型值和最大值,并给出了得到这个值的测试条件,详见下表。pSJednc

012ednc20190902pSJednc

除了表格以外,数据表中还给出了通态电阻随着结温变化的数据图。从图中可以看出,结温越高,通态电阻越高。正是由于这个特性,当单个功率MOSFET的电流容量不够时,可以采用多个同类型的功率MOSFET并联来进行扩流。pSJednc

如果需要计算在指定温度下的Rds(on),可以采用以下的计算公式。pSJednc

013ednc20190902pSJednc

上式中a为与工艺技术有关的常数,对于英飞凌的此类功率MOSFET,可以采用0.4作为常数值。如果需要快速的估算,可以粗略认为:在最高结温下的Rds(on)通态电阻是室温下通态电阻的2倍。下表的曲线给出了Rds(on)随环境温度变化的关系。pSJednc

014ednc20190902pSJednc

VBR(DSS):定义了MOSFET的源级和漏级的最大能购承受的直流电压。在数据表中,此参数都会在数据表的首页给出。注意给出的VBR(DSS)值是在室温下的值。pSJednc

015ednc20190902pSJednc

此外,数据表中还会给出在全温范围内(-55℃…+175℃) VBR(DSS) 随着温度变化的曲线。pSJednc

016ednc20190902pSJednc

从上表中可以看出,VBR(DSS)是随着温度变化的,所以在设计中要注意在极限温度下的VBR(DSS)仍然能够满足系统电源对VBR(DSS) 的要求。pSJednc

Qgs:数据表中给出了为了使功率MOSFET导通时在给定了的Vds电压下,当Vgs变化时的栅级电荷变化的曲线。从图表中可以看出,为了使MOSFET完全导通,Vgs的典型值约等于10V,由于器件完全导通,可以减少器件的静态损耗。pSJednc

017ednc20190902pSJednc

018ednc20190902pSJednc

Vgs:描述了在指定了漏级电流下需要的栅源电压。数据表中给出的是在室温下,当Vds=Vgs 时,漏极电流在微安等级时的Vgs 电压。数据表中给出了最小值、典型值和最大值。pSJednc

019ednc20190902pSJednc

需要注意的是,在同样的漏极电流下,Vgs 电压会随着结温的升高而减小。在高结温的情况下,漏极电流已经接近达到了Idss(漏极电流)。为此,数据表中还会给出一条比常温下指定电流大10倍的漏极电流曲线作为设计参考。如下图所示。pSJednc

020ednc20190902pSJednc

以上介绍了在功率MOSFET数据表中最为设计者关心的基本参数 Rds(on)VBR(DSS)QgsVgs。如果需要更为深入的了解和使用功率MOSFET,还需要进一步的去了解更深入的一些参数,将在本文的下篇《深入理解功率MOSFET数据表(下)》中再做介绍。pSJednc

 pSJednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
高杨
近20年在汽车电子TOP10公司经验,特别是在车载控制器领域(多媒体、车身、驾驶辅助及VCU)。曾任职博世汽车专家级工程师,超过10年在汽车零部件(博世和大陆汽车),5+年汽车半导体(德州仪器和英飞凌),历任多种资深(系统、设计、产品)工程师职务。丰富的平台开发(从0到1)及产品开发的工程经验和技术积累。 Ford SYNC第一代的核心硬件工程师,定义和开发了德州仪器(TI)第一款智能高边驱动器(TPS1H100-Q1),填补了公司在汽车电子市场的技术路线和市场空白。 整理和标准化了与设计开发的技术文件,可以直接用于指导设计及融入公司的文件体系中,满足体系审查要求和提高公司的设计流程和管理水平。硬件设计流程管理的模板(45+篇),硬件设计评审和检查清单模板(50+篇)。 企业内训师认证(TTT) ,超过2500页汽车电子设计培训内容PPT,满足从入门、中级及高级汽车电子设计的培训要求,目前在4家企业内部实施过培训,收到了很好的反馈。 目前获得13件汽车电子专利(截止2019年12月)。《EDN电子技术设计》汽车电子专栏作者ednchina.com/author/gaoyang
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 碳化硅功率模块及电控的设计、测试与系统评估 臻驱科技(上海)有限公司(以下简称“臻驱科技”)是一家以研发、生产和销售新能源车动力总成及其功率半导体模块为核心业务的高科技公司。2019年底,臻驱科技与日本罗姆半导体公司成立了联合实验室,并签订战略合作协议,合作内容包含了基于某些客户的需求,进行基于罗姆碳化硅芯片的功率半导体模块,及对应电机控制器的开发。本文即介绍臻驱对碳化硅功率模块的开发、测试及系统评估。
  • 克服PCB板间多连接器组对齐的挑战 小型化已经使得多个连接器对齐变得更加困难,而追求最优的设计实践和尽早地与连接器提供商交流有助于确保设计成功。
  • 对比英飞凌与比亚迪,看国产汽车半导体面临的挑战与发展 据汽车行业权威调研数据显示,2019 年国内车规级IGBT 市场呈现寡头垄断格局,英飞凌以高达58.2%的市场份额位居第一,比亚迪位列第二,占18%。作为国内第一家自主研发、生产车用IGBT芯片的公司,比亚迪半导体成为国内市场上最有能力挑战国际大厂的本土厂商。以比亚迪半导体为代表的国内汽车半导体厂商与以英飞凌为代表的国际厂商相比,无论在技术实力、市场规模,还是产品线布局上,都还有很大的差距。然而,从积极一面来看,国内半导体厂商仍然有着巨大的发展空间和机遇。
  • 物联网时代,连接器的发展未来是什么? 11月6日,由ASPENCORE主办的2020年“全球分销与供应链领袖峰会”在深圳召开。会上,来自北京京北通宇电子元件有限公司首席科学家顾问宋玉明发表了题为“连接器发展历程与未来趋势”的演讲,通过回顾连接器百年发展历史来看“新常态”下分销行业的未来...
  • STM32 L5,构筑IoT(物联网)时代的安全防火墙 IoT(Internet of Things,IoT)物联网概念的提出是在1999年,起源于传媒领域,是信息科技产业的第三次革命。虽然物联网发展了这么多年,但是直到5G,才真正迎来爆发的时机。由于5G是真正具有超大容量的无线通信系统,结合芯片技术的发展,给了很多通信终端和嵌入式系统等万物互联的可能。在PC爆发的时代,我们曾经遭遇了泛滥的网络病毒和黑客攻击的威胁,于是孕育了杀毒软件和防火墙的需求,那么在5G及以后的大规模物联网时代,会不会出现同样的安全危机?又怎样在芯片层面去提前预防、解决这些安全问题。
  • 圆桌论坛:如何构建电子供应链安全体系? 2020年是非常特殊的一年,电子产业经历了几大风险事件,最典型的就是疫情和出口管制。这些事件的发生,彻底扰乱了原有的电子供应链运行秩序,让电子产业链上下游的企业都面临不同的挑战。如何应对这些挑战?有哪些经验总结可以防患于未然?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了